首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1998年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有38条查询结果,搜索用时 146 毫秒
21.
The leukocyte Ig-like receptor (LILR/ILT/LIR) family comprises 13 members that are either activating or inhibitory receptors, regulating a broad range of cells in the immune responses. LILRB1 (ILT2), LILRB2 (ILT4) and LILRA1 (LIR6) can recognize MHC (major histocompatibility complex) class I or class I-like molecules, and LILRB1/HLA-A2, LILRB1/UL18 and LILRB2/HLA-G complex (extracellular domains D1D2) structures have been solved recently. The details of binding to MHC have been described. Despite high levels of sequence similarity among LILRA1, LILRA2 (ILT1), LILRA3 (ILT6) and LILRB1/B2, all earlier experiments showed that LILRA2 does not bind to MHC, but the reason is unknown. Here, we report the LILRA2 extracellular D1D2 domain crystal structure at 2.6 Å resolution, which reveals structural shifts of the corresponding MHC-binding amino acid residues in comparison with LILR B1/B2, explaining its non-binding to MHC molecules. We identify some key residues with great influence on the local structure, which exist only in the MHC-binding receptors. Moreover, we show that LILRA2 forms a domain-swapped dimer. Further work with these key swapping residues yields a monomeric form, confirming that the domain-swapping is primarily amino acid sequence-specific. The structure described here supports the dimer conformation in solution observed earlier, and implies a stress-induced regulation by dimerization, consistent with its function as a heat shock promoter.  相似文献   
22.
TGFB1 (transforming growth factor beta 1) is a potent cytokine playing a driving role in development, fibrosis and cancer. It is synthesized as prodomain-growth factor complex that requires tethering to LTBP (latent transforming growth factor beta binding protein) for efficient secretion into the extracellular space. Upon release, this large latent complex is sequestered by anchorage to extracellular matrix (ECM) networks, from which the mature growth factor needs to be activated in order to reach its receptors and initiate signaling. Here, we uncovered a novel intracellular secretion pathway by which the latent TGFB1 complex reaches the plasma membrane and is released from fibroblasts, the key effector cells during tissue repair, fibrosis and in the tumor stroma. We show that secretion of latent TGFB1, but not of other selected cytokines or of bulk cargo, is regulated by fibroblast-ECM communication through ILK (integrin linked kinase) that restricts RHOA activity by interacting with ARHGAP26/GRAF1. Latent TGFB1 interacts with GORASP2/GRASP55 and is detected inside MAP1LC3-positive autophagosomal intermediates that are secreted by a RAB8A-dependent pathway. Interestingly, TGFB1 secretion is fully abrogated in human and murine fibroblasts and macrophages that lack key components of the autophagic machinery. Our data demonstrate an unconventional secretion mode of TGFB1 adding another level of control of its bioavailability and activity in order to effectively orchestrate cellular programs prone to dysregulation as seen in fibrosis and cancer.  相似文献   
23.
Twelve pairs of healthy sedentary males matched for their body mass index (BMI) with either a low insulin response (LIR; a stage of prediabetes) or a high (HIR; controls) to a standardized glucose infusion test (GIT) were studied in respect to their exercise capacities (WOBLA, WSL and relative WOBLA: WOBLA × WSL-1 × 100), muscle fiber composition (%ST), muscle citrate synthase activity (CS), muscle ubiquinone (MUQ), MUQ over %ST (muscle quality index, MQI), and peripheral insulin sensitivity (PIS) as described with insulin-clamp techniques (SIGITmean). LIR and HIR displayed normal PIS and positive relationships versus exercise capacity. LIR's but not HIR's relative WOBLA was related to CS as earlier only documented in endurance athletes but at a lower level than both in HIR and athletes. This pointed at a poor peripheral oxygen delivery in LIR. LIR's MQI decreased relative to HIR's the higher the muscle CS indicating radical related muscle trauma in LIR as in athletes. LIR representing prediabetes described muscle anomalies, which could represent prestages of the lesions observed in type-2 diabetes. They are claimed to be responsible for insulin-, glucose-, lipid-resistance, and peripheral circulatory resistance.  相似文献   
24.
TAX1BP1, a ubiquitin-binding adaptor, plays critical roles in the innate immunity and selective autophagy. During autophagy, TAX1BP1 may not only function as an autophagy receptor to recruit ubiquitylated substrates for autophagic degradation, but also serve as a Myosin VI cargo adaptor protein for mediating the maturation of autophagosome. However, the mechanistic basis underlying the specific interactions of TAX1BP1 with ubiquitin and Myosin VI remains elusive. Here, using biochemical, NMR and structural analyses, we elucidate the detailed binding mechanism and uncover the key determinants for the interaction between TAX1BP1 and ubiquitin. In addition, we reveal that both tandem zinc-fingers of TAX1BP1 and the conformational rigidity between them are required for the Myosin VI binding of TAX1BP1, and ubiquitin and Myosin VI are mutually exclusive in binding to TAX1BP1. Collectively, our findings provide mechanistic insights into the dual functions of TAX1BP1 in selective autophagy.  相似文献   
25.
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1-5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that recruit protein tyrosine phosphatase non-receptor type 6 (PTPN6 or SHP-1), protein tyrosine phosphatase non-receptor type 11 (PTPN11 or SHP-2), or Src homology 2 domain-containing inositol phosphatase (SHIP), leading to negative regulation of immune cell activation. Certain of these receptors also play regulatory roles in neuronal activity and osteoclast development. The activation of LILRBs on immune cells by their ligands may contribute to immune evasion by tumors. Recent studies found that several members of LILRB family are expressed by tumor cells, notably hematopoietic cancer cells, and may directly regulate cancer development and relapse as well as the activity of cancer stem cells. LILRBs thus have dual concordant roles in tumor biology – as immune checkpoint molecules and as tumor-sustaining factors. Importantly, the study of knockout mice indicated that LILRBs do not affect hematopoiesis and normal development. Therefore LILRBs may represent ideal targets for tumor treatment. This review aims to summarize current knowledge on expression patterns, ligands, signaling, and functions of LILRB family members in the context of cancer development.  相似文献   
26.
Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database (http://ilir.uk/virus/) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.  相似文献   
27.
A new plasmid, pSP2, was constructed as a cloning vector for use in Streptococcus pneumoniae. It allows direct selection of recombinant plasmids, even for DNA fragments not homologous to the S. pneumoniae chromosome, as based on the failure to maintain long inverted repeats (LIRs) hyphen-free in bacterial plasmids. Plasmid pSP2 contains a 1.4-kb BamHI fragment ("hyphen") flanked by 1.9-kb LIRs. The removal of the 1.4-kb BamHI fragment followed by ligation creates a plasmid containing a 1.9-kb insert-free LIR; plasmids with such non-hyphenated LIRs were not established when transferred into S. pneumoniae. Replacement of the original 1.4-kb insert by other restriction fragments restored plasmid viability. Investigation of plasmid transfer by transformation suggests that intrastrand synapsis between the LIRs could occur, thus facilitating plasmid establishment (a process we call self-facilitation). Such an intrastrand synapsis could also account for rare occurrences of insert-inversion noticed upon transfer as well as for the formation of palindrome-deleted derivatives at low frequency. Plasmid pSP2 carries two selectable genes, tet and ermC, and can be used for cloning of fragments produced by a variety of restriction enzymes (BamHI, Bg/II, Bc/I or Sau3A, and Sa/I or XhoI).  相似文献   
28.
ABSTRACT

Short linear motifs, known as LC3-interacting regions (LIRs), interact with mactoautophagy/autophagy modifiers (Atg8/LC3/GABARAP proteins) via a conserved universal mechanism. Typically, this includes the occupancy of 2 hydrophobic pockets on the surface of Atg8-family proteins by 2 specific aromatic and hydrophobic residues within the LIR motifs. Here, we describe an alternative mechanism of Atg8-family protein interaction with the non-canonical UBA5 LIR, an E1-like enzyme of the ufmylation pathway that preferentially interacts with GABARAP but not LC3 proteins. By solving the structures of both GABARAP and GABARAPL2 in complex with the UBA5 LIR, we show that in addition to the binding to the 2 canonical hydrophobic pockets (HP1 and HP2), a conserved tryptophan residue N-terminal of the LIR core sequence binds into a novel hydrophobic pocket on the surface of GABARAP proteins, which we term HP0. This mode of action is unique for UBA5 and accompanied by large rearrangements of key residues including the side chains of the gate-keeping K46 and the adjacent K/R47 in GABARAP proteins. Swapping mutations in LC3B and GABARAPL2 revealed that K/R47 is the key residue in the specific binding of GABARAP proteins to UBA5, with synergetic contributions of the composition and dynamics of the loop L3. Finally, we elucidate the physiological relevance of the interaction and show that GABARAP proteins regulate the localization and function of UBA5 on the endoplasmic reticulum membrane in a lipidation-independent manner.

Abbreviations: ATG: AuTophaGy-related; EGFP: enhanced green fluorescent protein; GABARAP: GABA-type A receptor-associated protein; ITC: isothermal titration calorimetry; KO: knockout; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NMR: nuclear magnetic resonance; RMSD: root-mean-square deviation of atomic positions; TKO: triple knockout; UBA5: ubiquitin like modifier activating enzyme 5  相似文献   
29.
Atg8-family proteins are the best-studied proteins of the core autophagic machinery. They are essential for the elongation and closure of the phagophore into a proper autophagosome. Moreover, Atg8-family proteins are associated with the phagophore from the initiation of the autophagic process to, or just prior to, the fusion between autophagosomes with lysosomes. In addition to their implication in autophagosome biogenesis, they are crucial for selective autophagy through their ability to interact with selective autophagy receptor proteins necessary for the specific targeting of substrates for autophagic degradation. In the past few years it has been revealed that Atg8-interacting proteins include not only receptors but also components of the core autophagic machinery, proteins associated with vesicles and their transport, and specific proteins that are selectively degraded by autophagy. Atg8-interacting proteins contain a short linear LC3-interacting region/LC3 recognition sequence/Atg8-interacting motif (LIR/LRS/AIM) motif which is responsible for their interaction with Atg8-family proteins. These proteins are referred to as LIR-containing proteins (LIRCPs). So far, many experimental efforts have been carried out to identify new LIRCPs, leading to the characterization of some of them in the past 10 years. Given the need for the identification of LIRCPs in various organisms, we developed the iLIR database (https://ilir.warwick.ac.uk) as a freely available web resource, listing all the putative canonical LIRCPs identified in silico in the proteomes of 8 model organisms using the iLIR server, combined with a Gene Ontology (GO) term analysis. Additionally, a curated text-mining analysis of the literature permitted us to identify novel putative LICRPs in mammals that have not previously been associated with autophagy.  相似文献   
30.
Mitophagy is a fundamental process that determines mitochondrial quality and homeostasis. Several mitophagy receptors, including the newly identified FUNDC1, mediate selective removal of damaged or superfluous mitochondria through their specific interaction with LC3. However, the precise mechanism by which this interaction is regulated to initiate mitophagy is not understood. Here, we report the solution structure of LC3 in complex with a peptide containing the FUNDC1 LC3-interacting region (LIR) motif. The structure reveals a noncanonical LC3-LIR binding conformation, in which the third LIR residue (Val20) is also inserted into the hydrophobic pocket of LC3, together with the conserved residues Tyr18 and Leu21. This enables Tyr18 to be positioned near Asp19 of LC3, and thus phosphorylation of Tyr18 significantly weakens the binding affinity due to electrostatic repulsion. Functional analysis revealed that mitochondrial targeting of the LIR-containing cytosolic portion of FUNDC1 is necessary and sufficient to initiate mitophagy when Tyr18 is unphosphorylated, even in the absence of mitochondrial fragmentation. Thus, we demonstrated that phosphorylation of Tyr18 of FUNDC1 serves as a molecular switch for mitophagy. This may represent a novel target for therapeutic intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号