首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   10篇
  2024年   1篇
  2023年   6篇
  2022年   6篇
  2021年   26篇
  2020年   57篇
  2019年   58篇
  2018年   11篇
  2017年   2篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
91.
Pancreatic cancer is a serious solid malignant tumor worldwide. Increasing evidence has pointed out that abnormal expressions of long noncoding RNAs are involved in various tumors. Meanwhile, LINC00052 is reported as a famous tumor regulator in several cancers. Nevertheless, the biological role of LINC00052 in pancreatic cancer progression is still unknown. Our study was to explore the specific mechanism of LINC00052 in pancreatic cancer. First, we observed that the LINC00052 was obviously downregulated in several pancreatic cancer cell lines. Overexpression of LINC00052 greatly repressed AsPC-1 and SW1990 cell proliferation, triggered the apoptosis and prevented cell cycle in the G1 phase. For another, AsPC-1 and SW1990 cell migration and invasion capacity were also obviously repressed by LINC00052 upregulation. Moreover, miR-330-3p was elevated in pancreatic cancer cells and can function as a target of LINC00052 confirmed by luciferase reporter and RNA Immunoprecipitation (RIP) experiments. Inhibition of miR-330-3p could depress pancreatic cancer progression while overexpressed miR-330-3p exhibited an opposite process. Finally, our data indicated that the LINC00052 also remarkably suppressed pancreatic tumor growth via modulating miR-330-3p in vivo. To conclude, our study revealed that the LINC00052 might provide a new perspective for pancreatic cancer therapy.  相似文献   
92.
We isolated the transmembrane and coiled‐coil domains 5A (Tmco5A) gene using polymerase chain reaction‐based subtraction technique and showed that Tmco5A was predominantly expressed in rat testes starting at 4 weeks of postnatal development. When expressed in COS7 cells, TMCO5A was found to be distributed in the endoplasmic reticulum‐nuclear membrane (ER‐NM) of cells as a membrane‐associated protein, while TMCO5AΔC lacking the transmembrane region (TM) mislocalized and diffused throughout the cytoplasm. The result suggested that TM is responsible for the retention of TMCO5A at the ER‐NM. Immunocytochemical and immunoblotting analyses indicated that TMCO5A was localized along the posterior part of the nuclei in both round and elongated rat spermatids but disappeared from epididymal spermatozoa. Double immunolabeling of isolated spermatids with the anti‐TMCO5A and the anti‐β tubulin antibodies showed that TMCO5A was always found to be closely associated with developing manchette microtubules but did not completely colocalize with them. On the other hand, we found that almost all TMCO5A colocalized with SUN4, a linker of nucleoskeleton and cytoskeleton complex protein present at the posterior part of spermatid nuclei. These data suggested that TMCO5A is located closer to the nuclei than the manchette microtubules. It is likely that TMCO5A, in association with manchette microtubules, is involved in the process of spermiogenesis.  相似文献   
93.
The dysfunction of the blood‐brain barrier (BBB) is one of the main pathological features of Alzheimer's disease (AD). Memantine (MEM), an N‐methyl‐d ‐aspartate (NMDA) receptor antagonist, has been reported that been used widely for AD therapy. This study was performed to demonstrate the role of the MEM in regulating BBB permeability in AD microenvironment as well as its possible mechanisms. The present study showed that LINC00094 was dramatically increased in Abeta1‐42‐incubated microvascular endothelial cells (ECs) of BBB model in vitro. Besides, it was decreased in MEM‐incubated ECs. Silencing LINC00094 significantly decreased BBB permeability, meanwhile up‐regulating the expression of ZO‐1, occludin and claudin‐5. Furthermore, silencing LINC00094 enhance the effect of MEM on decreasing BBB permeability in AD microenvironment. The analysis of the mechanism demonstrated that reduction of LINC00094 inhibited Endophilin‐1 expression by up‐regulating miR‐224‐4p/miR‐497‐5p, promoted the expression of ZO‐1, occludin and claudin‐5, and ultimately alleviated BBB permeability in AD microenvironment. Taken together, the present study suggests that the MEM/LINC00094/miR‐224‐5p (miR‐497‐5p)/Endophilin‐1 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment. Silencing LINC00094 combined with MEM provides a novel target for the therapy of AD.  相似文献   
94.
95.
Mounting evidence highlights long non‐coding RNAs (lncRNAs) as crucial regulators in multiple types of biological processes and contributing to tumourigenesis. LINC01133, located in chromosome 1q23.2, was a recently identified novel lncRNA with a length of 1154nt. It was involved in the development of colorectal cancer and non‐small cell lung cancer. However, its clinical relevance, biological functions and potential molecular mechanism in breast cancer are still unclear. In this study, we found that the LINC01133 expression was significantly down‐regulated in breast cancer samples and was associated with progression and poor prognosis of breast cancer. Further experiments demonstrated that overexpression of LINC01133 inhibited invasion and metastasis in breast cancer both in vitro and in vivo. Mechanistic investigations revealed that LINC01133 repressed SOX4 expression by recruiting EZH2 to SOX4 promoter. Moreover, rescue experiments further confirmed that LINC01133 functional acted as an anti‐oncogene, at least partly, via repressing SOX4 in breast cancer. Taken together, these findings imply that LINC01133 could serve as a novel prognostic biomarker and potential therapeutic target for breast cancer.  相似文献   
96.
Nuclear migration and anchorage within developing and adult tissues relies heavily upon large macromolecular protein assemblies called LInkers of the Nucleoskeleton and Cytoskeleton (LINC complexes). These protein scaffolds span the nuclear envelope and connect the interior of the nucleus to components of the surrounding cytoplasmic cytoskeleton. LINC complexes consist of two evolutionary-conserved protein families, Sun proteins and Nesprins that harbor C-terminal molecular signature motifs called the SUN and KASH domains, respectively. Sun proteins are transmembrane proteins of the inner nuclear membrane whose N-terminal nucleoplasmic domain interacts with the nuclear lamina while their C-terminal SUN domains protrudes into the perinuclear space and interacts with the KASH domain of Nesprins. Canonical Nesprin isoforms have a variable sized N-terminus that projects into the cytoplasm and interacts with components of the cytoskeleton. This protocol describes the validation of a dominant-negative transgenic mouse strategy that disrupts endogenous SUN/KASH interactions in a cell-type specific manner. Our approach is based on the Cre/Lox system that bypasses many drawbacks such as perinatal lethality and cell nonautonomous phenotypes that are associated with germline models of LINC complex inactivation. For this reason, this model provides a useful tool to understand the role of LINC complexes during development and homeostasis in a wide array of tissues.  相似文献   
97.
Positioning the nucleus is critical for many cellular processes including cell division, migration and differentiation. The linker of nucleoskeleton and cytoskeleton (LINC) complex spans the inner and outer nuclear membranes and has emerged as a major factor in connecting the nucleus to the cytoskeleton for movement and positioning. Recently, we discovered that the diaphanous formin family member FHOD1 interacts with the LINC complex component nesprin-2 giant (nesprin-2G) and that this interaction plays essential roles in the formation of transmembrane actin-dependent nuclear (TAN) lines and nuclear movement during cell polarization in fibroblasts. We found that FHOD1 strengthens the connection between nesprin-2G and rearward moving dorsal actin cables by providing a second site of interaction between nesprin-2G and the actin cable. These results indicate that the LINC complex connection to the actin cytoskeleton can be enhanced by cytoplasmic factors and suggest a new model for TAN line formation. We discuss how the nesprin-2G-FHOD1 interaction may be regulated and its possible functional significance for development and disease.  相似文献   
98.
The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affect cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins.  相似文献   
99.
Accumulated evidence revealed that numerous long noncoding RNAs (lncRNAs) have been found to be involved in the development and progression of hepatocellular carcinoma (HCC). LINC00628, a member of lncRNAs, has been reported to act as a tumor suppressor in gastric cancer and breast cancer. However, its potential role in HCC still remains unknown. Herein, we characterized the function of LINC00628 in HCC. Our investigation has revealed that LINC00628 were dramatically decreased in HCC tissues and cells, and inhibited the migration and invasion of HCC cells in vitro and in vivo. Moreover, LINC00628 exerted its tumor suppressive function by repressing the vascular endothelial growth factor A (VEGFA) promoter activity. A highly conserved region element in LINC00628 was identified by a cross-species comparative analysis, which is required for LINC00628 exerted its function. Dual-luciferase reporter assay showed that the conserved sequence mediated the interaction with a specific region of VEGFA promoter, resulting in a decrease of VEGFA expression. In conclusion, our results demonstrated that LINC00628 could function as a tumor suppressor in HCC via its conserved sequence elements interacting with a particular region of VEGFA promoter, suggesting that LINC00628 may serve as a novel promising target for diagnosis and therapy in HCC.  相似文献   
100.
The great importance of long noncoding RNAs (lncRNAs) has been acknowledged in tumorigenesis gradually. LncRNA LINC01857 is a novel lncRNA and has been reported to promote breast cancer progression. However, the biological roles of LINC01857 in glioma are not explored. In the present research, LINC01857 levels were found to be upregulated in glioma. In addition, LINC01857 expression is negatively correlated with survival rate in glioma patients. Functional investigation revealed that LINC01857 downregulation impaired glioma proliferation and invasiveness. Furthermore, LINC01857 knockdown led to repressed growth of glioma in vivo. We found that LINC01857 could be a sponge for miR-1281 and inhibits its level to upregulate TRIM65 expression. What's more, we showed that miR-1281 mimics also attenuated tumor cell proliferation, migration, and invasion. And rescue assays demonstrated that LINC01857 promotes glioma progression through modulating miR-1281/TRIM65 pathway. Collectively, this study first demonstrated that a novel LINC01857/miR-1281/TRIM65 signaling regulates glioma progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号