首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6579篇
  免费   167篇
  国内免费   225篇
  2023年   57篇
  2022年   64篇
  2021年   59篇
  2020年   80篇
  2019年   116篇
  2018年   155篇
  2017年   71篇
  2016年   94篇
  2015年   91篇
  2014年   323篇
  2013年   502篇
  2012年   217篇
  2011年   313篇
  2010年   216篇
  2009年   272篇
  2008年   302篇
  2007年   321篇
  2006年   268篇
  2005年   278篇
  2004年   238篇
  2003年   221篇
  2002年   159篇
  2001年   123篇
  2000年   97篇
  1999年   145篇
  1998年   126篇
  1997年   108篇
  1996年   113篇
  1995年   111篇
  1994年   125篇
  1993年   89篇
  1992年   106篇
  1991年   90篇
  1990年   87篇
  1989年   107篇
  1988年   82篇
  1987年   91篇
  1986年   83篇
  1985年   98篇
  1984年   133篇
  1983年   79篇
  1982年   106篇
  1981年   82篇
  1980年   70篇
  1979年   68篇
  1978年   64篇
  1977年   47篇
  1976年   42篇
  1974年   23篇
  1973年   24篇
排序方式: 共有6971条查询结果,搜索用时 15 毫秒
991.
The primary Al-tolerance mechanism in plants involves exudation and/or accumulation of specific organic acid species, which form non-phytotoxic complexes with Al3+ under physiological conditions. An evaluation was done of the role of organic acids in the tolerance mechanism of a cell suspension line of coffee Coffea arabica that exhibits Al-tolerance (LAMt) but for which the metabolic tolerance mechanism remains unknown. Significant differences existed in malate dehydrogenase and citrate synthase activities (key enzymes in organic acids metabolism) between protein extracts (day 7 of culture cycle) of the L2 (Al-sensitive) and LAMt (Al-tolerant) cells when cell suspensions were treated with 100 μM AlCl3. HPLC analysis showed that the suspension cells of both lines exudate malate when incubated in a minimal solution but that exudation was not enhanced by treatment with AlCl3 (100 μM). This is the first study demonstrating that plant Al-tolerance may be associated with down-regulation of malate dehydrogenase and citrate synthase activities.  相似文献   
992.
Amelioration of cadmium-induced cardiac impairment by taurine   总被引:1,自引:0,他引:1  
The present study has been designed to investigate the protective role of taurine (2-aminoethanesulfonic acid), a sulfur containing conditionally essential amino acid, against cadmium-induced cardiac dysfunction in mice. Cadmium chloride (CdCl(2)) was used as the source of cadmium and it was administered orally at a dose of 4mg/kg body weight for 6 days. Cadmium exposure caused significant accumulation of the cadmium and iron in mice hearts tissue. Levels of serum specific markers related to cardiac impairments, e.g. total cholesterol, HDL cholesterol and triglyceride were altered due to cadmium toxicity. Reduction in the activities of antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) have been observed in cadmium exposed mice. Cadmium intoxication also decreased the cardiac glutathione (GSH) and total thiols contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products, protein carbonyl content and the extent of DNA fragmentation. Oral administration of taurine at a dose of 100mg/kg body weight for 5 days, however, prevented all the toxin-induced oxidative impairments mentioned above. "Ferric Reducing/Antioxidant Power (FRAP) assay" showed that taurine could protect the cardiac tissue by preventing cadmium-induced reduction of the intracellular antioxidant power. Histological examination of cardiac segments also supported the beneficial role of taurine against cadmium-induced damages in the murine hearts. Effect of a well established antioxidant, vitamin C has been included in the study as a positive control. Combining all, results suggest that taurine attenuates cadmium-induced impairment in mice hearts.  相似文献   
993.
In response to stressful conditions like supra-optimal salinity in the growth medium or temperature, many microorganisms accumulate low-molecular-mass organic compounds known as compatible solutes. In contrast with mesophiles that accumulate neutral or zwitterionic compounds, the solutes of hyperthermophiles are typically negatively charged. (2R)-2-(α-d-Mannopyranosyl)glycerate (herein abbreviated as mannosylglycerate) is one of the most widespread solutes among thermophilic and hyperthermophilic prokaryotes. In this work, several molecules chemically related to mannosylglycerate were synthesized, namely (2S)-2-(1-O-α-d-mannopyranosyl)propionate, 2-(1-O-α-d-mannopyranosyl)acetate, (2R)-2-(1-O-α-d-glucopyranosyl)glycerate and 1-O-(2-glyceryl)-α-d-mannopyranoside. The effectiveness of the newly synthesized compounds for the protection of model enzymes against heat-induced denaturation, aggregation and inactivation was evaluated, using differential scanning calorimetry, light scattering and measurements of residual activity. For comparison, the protection induced by natural compatible solutes, either neutral (e.g., trehalose, glycerol, ectoine) or negatively charged (di-myo-inositol-1,3′-phosphate and diglycerol phosphate), was assessed. Phosphate, sulfate, acetate and KCl were also included in the assays to rank the solutes and new compounds in the Hofmeister series. The data demonstrate the superiority of charged organic solutes as thermo-stabilizers of enzymes and strongly support the view that the extent of protein stabilization rendered by those solutes depends clearly on the specific solute/enzyme examined. The relevance of these findings to our knowledge on the mode of action of charged solutes is discussed.  相似文献   
994.
The present study demonstrates the expression of hexose-6-phosphate dehydrogenase and 11 beta-hydroxysteroid dehydrogenase type 1 in human neutrophils, and the presence and activity of these enzymes in the microsomal fraction of the cells. Their concerted action together with the previously described glucose-6-phosphate transporter is responsible for cortisone-cortisol interconversion detected in human neutrophils. Furthermore, the results suggest that luminal NADPH generation by the cortisol dehydrogenase activity of 11 beta-hydroxysteroid dehydrogenase type 1 prevents neutrophil apoptosis provoked by the inhibition of the glucose-6-phosphate transporter. In conclusion, the maintenance of the luminal NADPH pool is an important antiapoptotic factor in neutrophil granulocytes.  相似文献   
995.
Zheng J  Tian Q  Hou W  Watts JA  Schrum LW  Bonkovsky HL 《FEBS letters》2008,582(13):1829-1834
5-Aminolevulinic acid synthase-1 (ALAS1) and heme oxygenase-1 (HO-1) are the rate-controlling enzymes for heme biosynthesis and degradation, respectively. Expression of these two genes showed tissue-specific expression pattern at both mRNA and protein levels in selected non-treated rat tissues. In the livers of rats receiving oral ethanol for 10 weeks, ALAS1 mRNA levels were increased by 65%, and the precursor and mature ALAS1 protein levels were increased by 1.8- and 2.3-fold, respectively, while no changes were observed in HO-1 mRNA and protein levels, compared with pair-fed controls. These results provide novel insights into the effects of chronic ethanol consumption on hepatic heme biosynthesis and porphyrias.  相似文献   
996.
Hwang EY  Huh JW  Choi MM  Choi SY  Hong HN  Cho SW 《FEBS letters》2008,582(27):3793-3797
We have examined polyphenols as potential inhibitors of UDP-glucose dehydrogenase (UGDH) activity. Gallic acid and quercetin decreased specific activities of UGDH and inhibited the proliferation of MCF-7 human breast cancer cells. Western blot analysis showed that gallic acid and quercetin did not affect UGDH protein expression, suggesting that UGDH activity is inhibited by polyphenols at the post-translational level. Kinetics studies using human UGDH revealed that gallic acid was a non-competitive inhibitor with respect to UDP-glucose and NAD+. In contrast, quercetin showed a competitive inhibition and a mixed-type inhibition with respect to UDP-glucose and NAD+, respectively. These results indicate that gallic acid and quercetin are effective inhibitors of UGDH that exert strong antiproliferative activity in breast cancer cells.  相似文献   
997.
Despite its toxicity for the majority of living matter on our planet, numerous microorganisms, both aerobic and anaerobic, can use carbon monoxide (CO) as a source of carbon and/or energy for growth. The capacity to employ carboxidotrophic energy metabolism anaerobically is found in phylogenetically diverse members of the Bacteria and the Archaea. The oxidation of CO is coupled to numerous respiratory processes, such as desulfurication, hydrogenogenesis, acetogenesis, and methanogenesis. Although as diverse as the organisms capable of it, any CO-dependent energy metabolism known depends on the presence of carbon monoxide dehydrogenase. This review summarizes recent insights into the CO-dependent physiology of anaerobic microorganisms with a focus on methanogenic archaea. Carboxidotrophic growth of Methanosarcina acetivorans, thought to strictly rely on the process of methanogenesis, also involves formation of methylated thiols, formate, and even acetogenesis, and, thus, exemplifies how the beneficial redox properties of CO can be exploited in unexpected ways by anaerobic microorganisms.  相似文献   
998.
The present study reports on the retention of conformational flexibility of a model allosteric protein upon immobilization on self-assembled monolayers (SAMs) on gold. Organothiolated SAMs of different compositions were utilized for adsorptive and covalent attachment of bovine liver glutamate dehydrogenase (GDH), a well-characterized allosteric enzyme. Sensitive fluorimetric assays were developed to determine immobilization capacity, specific activity, and allosteric properties of the immobilized preparations as well as the potential for repeated use and continuous catalytic transformations. The allosteric response of the free and immobilized forms towards ADP, L-leucine and high concentrations of NAD(+), some of the well-known activators for this enzyme, were determined and compared. The enzyme immobilized by adsorption or chemical binding responded similarly to the activators with a greater degree of activation, as compared to the free form. Also loss of activity involving the two immobilization procedures were similar, suggesting that residues essential for catalytic activity or allosteric properties of GDH remained unchanged in the course of chemical modification. A recently established method was used to predict GDH orientation upon immobilization, which was found to explain some of the experimental results presented. The general significance of these observations in connection with retention of native properties of protein structures upon immobilization on SAMs is discussed.  相似文献   
999.
The present work is focused on the possible relationship between nitric oxide and the induction of proline in response to salt stress. The plants were subjected to 100 mM NaCl and sodium nitroprusside (SNP; the donor of NO) at different concentrations. The plants showed lower NaCl-induced oxidative stress and proline accumulation after application of low concentrations of SNP together with the NaCl treatment. The reduction in the proline content was related to increased activity of proline dehydrogenase. These results suggest that the NO could be capable of mitigating damage associated with salt stress.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号