首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   2篇
  2020年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
11.
SKPI(shrimp Kunitz-type protease inhibitor)是日本囊对虾(Marsupenaeus japonicus)体内的一个小分子多肽, 含有一个Kunitz型结构域, 属于丝氨酸蛋白酶抑制剂。目前已知丝氨酸蛋白酶抑制剂在节肢动物免疫系统中起着非常重要的作用, 为了了解SKPI在对虾天然免疫系统中的作用, 首先对其进行了重组表达。从日本囊对虾肝胰腺中扩增skpi的cDNA片段, 插入改造后的pPIC9K酵母表达载体, 获得的重组质粒转化至毕赤酵母GS115进行表达。由于改造的pPIC9K载体加入了6-His标签, 因此利用Ni?Sepharose?High?Performance对SKPI进行了高效纯化。初步的活性研究表明, 重组表达的SKPI能特异性地抑制胰蛋白酶的水解活性。  相似文献   
12.
The gene PKPI-B10 [AF536175] encoding in potato (Solanum tuberosum L., cv. Istrinskii) a Kunitz-type protein inhibitor of proteinases (PKPI) has been cloned into the pET23a vector and then expressed in Escherichia coli. The recombinant protein PKPI-B10 obtained as inclusion bodies was denatured, separated from admixtures by ion-exchange fast protein liquid chromatography (FPLC) on MonoQ under denaturing conditions, and renatured. The native protein was additionally purified by ion-exchange FPLC on DEAE-Toyopearl. The PKPI-B10 protein effectively inhibits the activity of trypsin, significantly weaker suppresses the activity of chymotrypsin, and has no effect on other serine proteinases: human leukocyte elastase, subtilisin Carlsberg, and proteinase K, and also the plant cysteine proteinase papain.  相似文献   
13.
Spider venom contains a very valuable repertoire of natural resources to discover novel components for molecular diversity analyses and therapeutic applications. In this study, HWTX-XI toxins from the spider venom glands of Ornithoctonus huwena which are Kunitz-type toxins (KTTs) and were directly cloned, analyzed and functionally characterized. To date, the HWTX-XI superfamily consists of 38 members deduced from 121 high-quality expressed sequence tags, which is the largest spider KTT superfamily with significant molecular diversity mainly resulted from cDNA tandem repeats as well as focal hypermutation. Among them, HW11c40 and HW11c50 may be intermediate variants between native Kunitz toxins and sub-Kunitz toxins based on evolutionary analyses. In order to elucidate their biological activities, recombinant HW11c4, HW11c24, HW11c27 and HW11c39 were successfully expressed, further purified and functionally characterized. Both HW11c4 and HW11c27 display inhibitory activities against trypsin, chymotrypsin and kallikrein. Moreover, HW11c4 is also an inhibitor relatively specific for Kv1.1 channels. HW11c24 and HW11c39 are found to be inactive on chymotrysin, trypsin, kallikrein, thrombin and ion channels. These findings provide molecular evidence for toxin diversification of the HWTX-XI superfamily and useful molecular templates of serine protease inhibitors and ion channel blockers for the development of potentially clinical applications.  相似文献   
14.
Potato cysteine proteinase inhibitors (PCPIs) represent a distinct group of proteins as they show no homology to any other known cysteine proteinase inhibitor superfamilies, but they all belong to the Kunitz-type soybean trypsin inhibitor family. cDNA clones for five PCPIs have been isolated and sequenced. Amino acid substitutions occurring in the limited regions forming loops on the surface of these proteins suggest a further classification of PCPIs into three subgroups. Accumulation of PCPI was observed in vacuoles of stems after treatment with jasmonic acid (JA) using immunocytochemical localisation, implying that these inhibitors are part of a potato defence mechanism against insects and pathogens. Genomic DNA analysis show that PCPIs form a multigene family and suggest that their genes do not possess any introns.  相似文献   
15.
The accumulation of the Kunitz-type chymotrypsin inhibitor WCI-3 in winged bean seeds is controlled developmentally. In vitro translation experiments showed that the WCI-3 mRNA was present in 35- and 40-day-old immature seeds after flowering. The size of the in vitro translation product is about 2 000 Da larger than that of the mature WCI-3 protein. The WCI-3 cDNA clones were isolated from a gtll cDNA library of 35-day-old immature seeds by immunoscreening. A nearly full-length cDNA clone was obtained containing an open reading frame of 207 amino acid residues. The deduced sequence of the 183 carboxy terminal amino acids coincides precisely with the amino acid sequence determined for purified WCI-3. The amino terminal extension of 24 residues has the characteristics of a signal peptide. Northern hybridization analysis of total poly(A)+ RNA showed that the WCI-3 mRNA is approximately 900 nucleotides long and accumulates in 35- and 40-day-old but not in 30-day-old immature seeds.  相似文献   
16.
ABSTRACT

In a tumor microenvironment, endothelial cell migration and angiogenesis allow cancer to spread to other organs causing metastasis. Indeed, a number of molecules that are involved in cytoskeleton re-organization and intracellular signaling have been investigated for their effects on tumor cell growth and metastasis. Alongside that, Amblyomin-X, a recombinant Kunitz-type protein, has been shown to reduce metastasis and tumor growth in in vivo experiments. In the present report, we provide a mechanistic insight to these antitumor effects, this is, Amblyomin-X modulates Rho-GTPases and uPAR signaling, and reduces the release of MMPs, leading to disruption of the actin cytoskeleton and decreased cell migration of tumor cell lines. Altogether, our data support a role for Amblyomin-X as a novel potential antitumor drug.  相似文献   
17.

Background

The group of Kunitz-type protease inhibitors (KPI) from potato is encoded by a polymorphic family of multiple allelic and non-allelic genes. The previous explanations of the KPI variability were based on the hypothesis of random mutagenesis as a key factor of KPI polymorphism.

Results

KPI-A genes from the genomes of Solanum tuberosum cv. Istrinskii and the wild species Solanum palustre were amplified by PCR with subsequent cloning in plasmids. True KPI sequences were derived from comparison of the cloned copies. “Hot spots” of recombination in KPI genes were independently identified by DnaSP 4.0 and TOPALi v2.5 software.The KPI-A sequence from potato cv. Istrinskii was found to be 100% identical to the gene from Solanum nigrum. This fact illustrates a high degree of similarity of KPI genes in the genus Solanum. Pairwise comparison of KPI A and B genes unambiguously showed a non-uniform extent of polymorphism at different nt positions. Moreover, the occurrence of substitutions was not random along the strand. Taken together, these facts contradict the traditional hypothesis of random mutagenesis as a principal source of KPI gene polymorphism. The experimentally found mosaic structure of KPI genes in both plants studied is consistent with the hypothesis suggesting recombination of ancestral genes. The same mechanism was proposed earlier for other resistance-conferring genes in the nightshade family (Solanaceae).Based on the data obtained, we searched for potential motifs of site-specific binding with plant DNA recombinases.During this work, we analyzed the sequencing data reported by the Potato Genome Sequencing Consortium (PGSC), 2011 and found considerable inconsistence of their data concerning the number, location, and orientation of KPI genes of groups A and B.

Conclusions

The key role of recombination rather than random point mutagenesis in KPI polymorphism was demonstrated for the first time.  相似文献   
18.
An early flowering mutant of Arabidopsis, elf32-D was isolated from activation tagging screening. The mutant flowered earlier than wild type under both long day and short day conditions. The mutant phenotype was caused by overexpression of a Kunitz-type trypsin inhibitor gene (AtKTI1). The expression of AtKTI1 was detected in leaves, flowers, siliques and roots. In the vegetative state, no change of flowering integrator gene expression was observed for AtKTI1 overexpressing plants. In contrast, at the reproductive stage, its overexpression resulted in the down-regulation of FLC, a strong floral repressor which integrates the autonomous and vernalization pathways and also the up-regulation of FT and AP1, which are downstream floral integrator genes. It is probable that the AtKTI1 overexpression inhibits components of the flowering signaling pathway upstream of FLC, eventually regulating expression of FLC, or causing perturbations in plant metabolism and thus indirectly affecting flowering.  相似文献   
19.
Messenger RNAs of a potato (Solanum tuberosum L.) Kunitz-type proteinase inhibitor(s) (PKPI) were present in potato disks excised from tubers stored for 14 months (old tubers) or 2 months (young tubers) after harvest, and disappeared during the aseptic culture. The PKPI mRNA accumulation was found to be induced in potato disks from the old tubers by the addition of jasmonic acid (JA) [3-oxo-2-(2-cis-pentenyl)-cyclopentane-1-acetic acid].  相似文献   
20.
Summary In at least two instances involving serine proteinase inhibitors it has been shown that functionally important sites evolve faster and exhibit more interspecific variability than functionally neutral sites. Because these phenomena are difficult to reconcile with the neutral theory of molecular evolution, it has been suggested that the accelerated rate of amino acid substitution at the reactive sites is brought about by positive Darwinian selection. We show that differences in the amino acid composition in the different regions of proteinase inhibitors can account for the differences in the rates of amino acid substitution. By using an index of protein mutability [D. Graur (1985) J Mol Evol 2253–62], we show that the amino acid composition of the reactive center in the ovomucoids andSpi-2 gene products is such that, regardless of function, they are expected to evolve more rapidly than any other polypeptide for which the rate of substitution is known. In addition, the reactive region in theSpi-2 proteins is shown to be free of compositional constraint. Positive Darwinian selection need not be invoked at the present time in these cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号