首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1179篇
  免费   98篇
  国内免费   103篇
  2024年   2篇
  2023年   41篇
  2022年   32篇
  2021年   36篇
  2020年   51篇
  2019年   60篇
  2018年   51篇
  2017年   43篇
  2016年   51篇
  2015年   48篇
  2014年   75篇
  2013年   121篇
  2012年   30篇
  2011年   58篇
  2010年   43篇
  2009年   37篇
  2008年   57篇
  2007年   61篇
  2006年   49篇
  2005年   40篇
  2004年   21篇
  2003年   38篇
  2002年   35篇
  2001年   36篇
  2000年   20篇
  1999年   18篇
  1998年   14篇
  1997年   16篇
  1996年   14篇
  1995年   14篇
  1994年   17篇
  1993年   21篇
  1992年   14篇
  1991年   15篇
  1990年   6篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   8篇
  1985年   13篇
  1984年   11篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1974年   3篇
  1973年   2篇
排序方式: 共有1380条查询结果,搜索用时 915 毫秒
21.
22.
The association between enzymatic and electrochemical reactions, enzymatic electrocatalysis, had proven to be a very powerful tooth in both analytical and synthetic fields. However, most of the combinations studied have involved enzymatic catalysis of irreversible or quasi-irreversible reaction. In the present work, we have investigated the possibility of applying enzymatic electrocatalysis to a case where the electrochemical reaction drives a thermodynamically unfavorable reversible reaction. Such thermodynamically unfavorable reactions include most of the oxidations catalyzed by dehydrogenases. Yeast alcohol dehydrogenase (E.C. 1.1.1.1) was chosen as a model enzyme because the oxidation of ethanol is thermodynamically very unfavorable and because its kinetics are well known. The electrochemical reaction was the oxidation of NADH which is particularly attractive as a method of cofactor regeneration. Both the electrochemical and enzymatic reactions occur in the same batch reactor in such a way that electrical energy is the only external driving force. Two cases were experimentally and theoretically developed with the enzyme either in solution or immobilized onto the electrode's surface. In both cases, the electrochemical reaction could drive the enzymatic reaction by NADH consumption in solution or directly in the enzyme's microenvironment. However even for a high efficiency of NADH consumption, the rate of enzymatic catalysis was limited by product (acetaldedehyde) inhibition. Extending this observation to the subject of organic synthesis catalyzed by dehydrogenases, we concluded that thermodynamically unfavorable reaction and can only be used in a process if efficient NAD regeneration and product elimination are simultaneously carried out within the reactor.  相似文献   
23.
Bacillus polymyxa ferments glucose to 1-2,3 butanediol, acetoin, ethanol, acetic acid, lactic acid, and formic acid. This research investigates product formation as a function of oxygen availability. A predictive model that simulates product distribution at known oxygen transfer rates is developed on the hypothesis that, in an energy-limited environment, B. polymyxa utilizes glucose and oxygen in the most efficient manner. The efficiency of utilization of glucose and oxygen is measured in terms of the ATP yields of each oxidative pathway. The identity of the products constituting the profile at the given oxygen transfer rate is determined by comparing the ATP production and consumption rates. While the ATP generated is calculated from a knowledge of the oxygen transfer rate and ATP yields of the oxidative pathways, the ATP consumption is estimated by the Pirt expression in terms of growth- and nongrowth-associated components. The product formation rates are obtained by solving ATP and NAD balance equations. They equate the production and consumption rates of these intermediates and are derived from the pseudo-steady-state hypothesis. The model is applied to continuous culture systems that are both open and closed with respect to biomass. At a given oxygen transfer rate, dilution rate, and inlet glucose concentration, the model predicts steady-state concentrations of two dominant fermentation endproducts with the help of four parameters that can be determined from independent experiments. In contrast with earlier approaches, the experimental studies are carried out in continuous culture. Product profiles are obtained at various oxygen transfer rates, fer rates, inlet glucose concentrations, and dilution rates. The effect of pH on the relative distribution of products is also demonstrated. Results indicate that the model is fairly successful in predicting product profiles as a function of oxygen availability. (c) 1992 John Wiley & Sons, Inc.  相似文献   
24.
Extractive lactic acid fermentation using ion-exchange resin   总被引:6,自引:0,他引:6  
Lactic acid fermentation is an end-product-inhibited reaction. The restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques. Studies were performed by attaching an ion-exchange resin packed column with a 2-L fermentor for separation of lactic acid. The fermentation, in a conventional batch mode, resulted in a lactic acid yield of 0.828 g . g(-1) and a lactic acid productivity of 0.313 g . L(-1) . h(-1). However, these could be further enhanced to 0.929 g . g(-1) and 1.665 g . L(-1) . h(-1) by extractive fermentation techniques. The effect of temperature on extractive fermentation was remarkable and has been included in this work.  相似文献   
25.
The integrated state of lambda in the host chromosome in lysogeny can be combined with its extrachromosomal replication in the lytic state to achieve high cloned gene productivities. Our previous studies on lambda expression systems(21,22) have shown 100% segregational stability of the cloned gene in lysogeny and cloned gene product levels up to 15% of total cell protein in a mutant lytic state. However, the expression phase of systems based on Escherichia coli JM109 and JM105 showed partial lysis of the productive culture despite a mutation in the lysis gene S of the lambda vector resulting in extracellular release of the cloned gene product. In the current study, we have eliminated partial lysis in the expression phase of lambda systems and conducted a detailed comparative analysis of these systems in relation to maximization of cloned gene productivity. The elimination of partial cell lysis by using a nonpermissive strain Y1089 did not enhance product yields vs. earlier systems that exhibited partial lysis. The elimination of nonessential lambda protein production by construction of a new vector NP326 did not yield higher product yields presumably because of the small fraction of these proteins in the lytic state. Temperature induction of the lysogen Y1089(NM1070) resulted in higher product levels than direct infection of Y1089 by the phage vector at a high multiplicity. Using infection experiments, we found the promoter lacUV5 in the vector lambdaZEQS to yield threefold higher product levels than lac in NM1070, suggesting possible further enhancement of productivity with stronger promoters. The occurrence or absence of partial lysis in lambda systems could be used beneficially to achieve extracellular or intracellular product as desired. The large capacity of lambda vectors for insert DNA suggests potential applications in obtaining highly amplified levels of operons and multienzyme systems. (c) 1992 John Wiley & Sons, Inc.  相似文献   
26.
Phenylacetic acid, as inhibitory product, was formed from a hydrolysis of penicillin G by immobilized penicillin acylase. In this article, electrodialysis was applied to remove phenylacetic acid continuously from the reaction mixture and to enhance an efficiency of the reaction. When 268 and 537 mM of penicillin G solution were used as the substrate, the concentration of phenylacetic acid in the reaction mixture could be maintained at less than 81 and 126 mM, respectively, and eventually, 86% and 88% of phenylacetic acid produced were removed from the reaction mixture at the end of the hydrolysis, respectively. Times required to reach 96% and 94.8% conversion from 268 and 537 mM of initial penicillin G could be reduced to 65% and 64% respectively, by means of electrodialysis; while 3.0% and 4.3% of initial penicillin G of 268 and 537 mM were permeated out of the reaction chamber during the hydrolysis, respectively. However, a loss of penicillin G by permeation could be reduced from 4.3% to 3.4% by a repeated addition of penicillin G.  相似文献   
27.
The enzyme specifically hydrolyzing guanosine 3,5-bis(diphosphate) [ppGpp] has been isolated from the ribosomal fraction of Escherichia coli; it released pyrophosphate from the 3-position of ppGpp. The effects of various drugs and antibiotics known to interfere with protein and/or RNA synthesis were investigated in the ppGpp degrading reaction. It was determined that tetracycline, chlorotetracycline, and thiostrepton strongly inhibited the reaction, whereas levallorphan gave a moderate inhibition. Only the tetracycline-mediated inhibition could be reversed by manganese ions. Oxytetracycline, rifampicin, fusidic acid, kirromycin, streptomycin, puromycin, chloramphenicol, and morphine did not inhibit the decay reaction.Abbreviations ppGpp guanosine 3,5-bis(diphosphate)  相似文献   
28.
29.
Summary The lkyB gene of Escherichia coli K12 has been cloned from the Clarke and Carbon colony bank by selecting a ColE1 plasmid conferring cholic acid resistance to lkyB mutants. The lkyB gene was localized on hybrid plasmid pJC778 by analysis of mutated plasmids generated by Tn5 insertions. Restriction analysis and complementation studies indicated that plasmid pJC778 carried genes nadA, lkyB and sucA which mapped at min 16.5; the lkyB + allele was dominant over the lkyB207 mutant allele. Analysis of cell envelope proteins from strains carrying plasmids pJC778 (lkyB +), pJC2578 or pJC2579 (lkyB::Tn5), as well as plasmid-coded proteins in a maxicell system, made it likely that the lkyB gene product was a membrane protein of molecular weight 42,000.  相似文献   
30.
In the ribosome-independent biosynthesis of peptide natural products, amino acid building blocks are generally activated in the form of phosphoesters, esters, or thioesters prior to amide bond formation. Following the recent discovery of bacterial enzymes that utilize an aminoacyl ester with a transfer ribonucleic acid (tRNA) in primary metabolism, the number of tRNA-dependent enzymes used in biosynthetic studies of peptide natural products has increased steadily. In this review, we summarize the rapidly growing knowledge base regarding two types of tRNA-dependent enzymes, which are structurally and functionally distinct. Initially, we focus on enzymes with the GCN5-related N-acetyltransferase fold and discuss the catalytic function and aminoacyl-tRNA recognition. Next, newly found peptide-amino acyl tRNA ligases and their ATP-dependent reactions are highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号