首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   63篇
  国内免费   10篇
  1241篇
  2023年   13篇
  2022年   20篇
  2021年   35篇
  2020年   21篇
  2019年   22篇
  2018年   21篇
  2017年   20篇
  2016年   17篇
  2015年   30篇
  2014年   76篇
  2013年   57篇
  2012年   56篇
  2011年   97篇
  2010年   66篇
  2009年   54篇
  2008年   55篇
  2007年   65篇
  2006年   68篇
  2005年   47篇
  2004年   44篇
  2003年   32篇
  2002年   31篇
  2001年   19篇
  2000年   6篇
  1999年   12篇
  1998年   9篇
  1997年   5篇
  1996年   8篇
  1995年   9篇
  1994年   17篇
  1993年   12篇
  1992年   13篇
  1991年   14篇
  1990年   14篇
  1989年   8篇
  1988年   8篇
  1987年   13篇
  1986年   10篇
  1984年   9篇
  1983年   7篇
  1982年   19篇
  1981年   10篇
  1980年   11篇
  1979年   12篇
  1978年   8篇
  1976年   7篇
  1973年   10篇
  1972年   3篇
  1971年   4篇
  1970年   6篇
排序方式: 共有1241条查询结果,搜索用时 15 毫秒
71.
Chronic ethanol ingestion mildly damages liver through oxidative stress and lipid oxidation, which is ameliorated by dietary supplementation with the anti-inflammatory β-amino acid taurine. Kidney, like liver, expresses cytochrome P450 2E1 that catabolizes ethanol with free radical formation, and so also may be damaged by ethanol catabolism. Sudden loss of kidney function, and not liver disease itself, foreshadows mortality in patients with alcoholic hepatitis [J. Altamirano, Clin. Gastroenterol. Hepatol. 2012, 10:65]. We found that ethanol ingestion in the Lieber-deCarli rat model increased kidney lipid oxidation, 4-hydroxynonenal protein adduction, and oxidatively truncated phospholipids that attract and activate leukocytes. Chronic ethanol ingestion increased myeloperoxidase-expressing cells in kidney and induced an inflammatory cell infiltrate. Apoptotic terminal deoxynucleotidyl transferase nick-end labeling-positive cells and active caspase-3 increased in kidney after ethanol ingestion, with reduced filtration with increased circulating blood urea nitrogen (BUN) and creatinine. These events were accompanied by release of albumin, myeloperoxidase, and the acute kidney injury biomarkers kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin, and cystatin c into urine. Taurine sequesters HOCl from myeloperoxidase of activated leukocytes, and taurine supplementation reduced renal lipid oxidation, reduced leukocyte infiltration, and reduced the increase in myeloperoxidase-positive cells during ethanol feeding. Taurine supplementation also normalized circulating BUN and creatinine levels and suppressed enhanced myeloperoxidase, albumin, KIM-1, and cystatin c in urine. Thus, chronic ethanol ingestion oxidatively damages kidney lipids and proteins, damages renal function, and induces acute kidney injury through an inflammatory cell infiltrate. The anti-inflammatory nutraceutical taurine effectively interrupts this ethanol-induced inflammatory cycle in kidney.  相似文献   
72.
Plexins are the receptors for semaphorins, a large family of axon guidance cues. Accordingly, the role of plexins in the development of the nervous system was the first to be acknowledged. However, the expression of plexins is not restricted to neuronal cells, and recent research has been increasingly focused on the roles of plexin-semaphorin signalling outside of the nervous system. During embryogenesis, plexins regulate the development of many organs, including the cardiovascular system, skeleton and kidney. They have also been shown to be involved in immune system functions and tumour progression. Analyses of the plexin signalling in different tissues and cell types have provided new insight to the versatility of plexin interactions with semaphorins and other cell-surface receptors. In this review we try to summarise the current understanding of the roles of plexins in non-neural development and immunity.  相似文献   
73.
Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl/ exchange and the failure of proton (H+) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.  相似文献   
74.
Angiotensin II (AngII), the major effector of the renin-angiotensin system, mediates kidney disease progression by signaling through the AT-1 receptor (AT-1R), but there are no specific measures of renal AngII activity. Accordingly, we sought to define an AngII-regulated proteome in primary human proximal tubular cells (PTEC) to identify potential AngII activity markers in the kidney. We utilized stable isotope labeling with amino acids (SILAC) in PTECs to compare proteomes of AngII-treated and control cells. Of the 4618 quantified proteins, 83 were differentially regulated. SILAC ratios for 18 candidates were confirmed by a different mass spectrometry technique called selected reaction monitoring. Both SILAC and selected reaction monitoring revealed heme oxygenase-1 (HO-1) as the most significantly up-regulated protein in response to AngII stimulation. AngII-dependent regulation of the HO-1 gene and protein was further verified in PTECs. To extend these in vitro observations, we overlaid a network of significantly enriched gene ontology terms from our AngII-regulated proteins with a dataset of differentially expressed kidney genes from AngII-treated wild type mice and AT-1R knock-out mice. Five gene ontology terms were enriched in both datasets and included HO-1. Furthermore, HO-1 kidney expression and urinary excretion were reduced in AngII-treated mice with PTEC-specific AT-1R deletion compared with AngII-treated wild-type mice, thus confirming AT-1R-mediated regulation of HO-1. Our in vitro approach identified novel molecular markers of AngII activity, and the animal studies demonstrated that these markers are relevant in vivo. These interesting proteins hold promise as specific markers of renal AngII activity in patients and in experimental models.  相似文献   
75.
Summary To identify precisely the structural and functional cell type in the collecting duct of the rat kidney expressing binding sites for Dolichos biflorus agglutinin (DBA), we stained serial paraffin sections of kidney with horseradish peroxidase-labeled DBA and with immunocytochemical methods for localizing (Na++K+)-ATPase and carbonic anhydrase II (CA II), enzymes found preferentially in principal and intercalated cells, respectively. Most principal cells expressing a strong basolateral staining for (Na+ + K+)-ATPase showed binding sites for DBA at their luminal surfaces. However, a minority of cells rich in CA II and showing morphologic characteristics of intercalated cells also expressed DBA binding sites at their luminal surface and apical cytoplasm. These data suggest that DBA cytochemistrycan provide a useful tool for studying the functional polarity of the main cell types of the collecting duct of the rat kidney.  相似文献   
76.
Accumulation of carboxymethylated proteins (CML-proteins) is taken as a biomarker of glycoxidative stress which is thought to contribute to the age-related impairment in tissue and cell function. To investigate the occurrence and extent of glycoxidative damage with aging in rat kidney, serum and urine, we have prepared a polyclonal antibody against CML-modified bovine serum albumin. We subsequently used it for immunolocalization and in enzyme-linked immunosorbent assays to evaluate CML-protein content. In the serum, CML-protein level was 1.43+/-0.14 pmol CML/micrograms protein at 3 months and significantly increased by 50% from 10 to 27 months (1.50+/-0.14 pmol CML/micrograms protein vs 2.27+/-0.26 pmol CML/micrograms protein), albumin and transferrin being the main modified proteins. In the urine, CML-protein level was 2.50+/-0.14 pmol CML/micrograms protein at 3 months and markedly increased from 10 months (2.99+/-0.24 pmol CML/micrograms protein) to 27 months (3.76+/-0.25 pmol CML/micrograms protein), with albumin as the main excreted modified protein. Immunolocalization of CML-proteins in kidney provided evidence for an age-dependent increased accumulation in extracellular matrices. Intense staining of the glomerular basement membrane (GBM), Bowman's capsule, and the tubular basement membrane was found. Additionally, the CML content for collagen from GBM was 195.85+/-28.95 pmol CML/microgrms OHPro at 3 months and significantly increased from 10 months (187.61+/-21.99 pmol CML/micrograms OHPro) to 27 months (334.55+/-62.21 pmol CML/micrograms OHPro). These data show that circulating CML-protein level in serum and urine and CML accumulation in nephron extracellular matrices with aging are increasing in parallel. The CML-protein measurement in serum and urine may thus be used as an index for the assessment of age-associated glycoxidative kidney damage.  相似文献   
77.
Fourteen diurnally active (07: 00–22: 39 h) normotensive healthy control subjects and 14 kidney transplant patients were studied by ambulatory blood pressure monitoring and wrist actigraphy simultaneously during one 24-h period. In the control group, circadian rhythms in systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressure, heart rate (HR), and wrist activity were documented by cosinor analysis with comparable afternoon peak times. In contrast, circadian rhythms with afternoon acrophases were detected only in HR and wrist activity in the patient group. The correlation of wrist activity with HR in controls and patients was comparable. Wrist activity and blood pressure were associated (r = 0.65 DBP and 0.54 SBP; p < 0.05) in controls, while in patients the relationship was weak or absent (r ranging from 0.02 SBP to 0.22 DBP). In 6 of 14 patients, BP and wrist activity were negatively correlated, reflecting the existence of nocturnal hypertension. In eight others, the correlation was small but positive. The 24-h pattern in BP and wrist activity in controls was comparably phased; however, this was not the case for the transplant patients, indicating the day-night pattern in blood pressure in this group is strongly dependent on pathologic phenomena rather than activity level and pattern.  相似文献   
78.
Despite a positive correlation between chronic kidney disease and atherosclerosis, the causative role of uremic toxins in leukocyte-endothelial interactions has not been reported. We thus examined the effects of indoxyl sulfate, a uremic toxin, on leukocyte adhesion to activated endothelial cells and the underlying mechanisms. Pretreatment of human umbilical vein endothelial cells (HUVEC) with indoxyl sulfate significantly enhanced the adhesion of human monocytic cells (THP-1 cell line) to TNF-α-activated HUVEC under physiological flow conditions. Treatment with indoxyl sulfate enhanced the expression level of E-selectin, but not that of ICAM-1 or VCAM-1, in HUVEC. Indoxyl sulfate treatment enhanced the activation of JNK, p38 MAPK, and NF-κB in TNF-α-activated HUVEC. Inhibitors of JNK and NF-κB attenuated indoxyl sulfate-induced E-selectin expression in HUVEC and subsequent THP-1 adhesion. Furthermore, treatment with the NAD(P)H oxidase inhibitor apocynin and the glutathione donor N-acetylcysteine inhibited indoxyl sulfate-induced enhancement of THP-1 adhesion to HUVEC. Next, we examined the in vivo effect of indoxyl sulfate in nephrectomized chronic kidney disease model mice. Indoxyl sulfate-induced leukocyte adhesion to the femoral artery was significantly reduced by anti-E-selectin antibody treatment. These findings suggest that indoxyl sulfate enhances leukocyte-endothelial interactions through up-regulation of E-selectin, presumably via the JNK- and NF-κB-dependent pathway.  相似文献   
79.
应用组织学和组织化学方法研究了黑斑蛙(Rana nigromaculata)肾的显微结构。结果表明,黑斑蛙的肾除具有肾单位和集合小管外,还见有淋巴样组织分散于肾实质中。在肾腹侧发现有与真骨鱼类斯坦尼斯小体相似的结构,其中聚集有较多的肥大细胞。说明黑斑蛙的肾具有多种生理功能。  相似文献   
80.
Summary An antiserum against conjugated histamine and two oligonucleotide probes that detect the mRNA encoding L-histidine decarboxylase (HDC) involved in histamine synthesis were used to study the appearance of histamine and its location in the kidneys of fetal, newborn and young postnatal rats and in the kidneys of pregnant rats. On embryonic days 16 and 18 (E16 and E18), some HA-immunoreactive (HA-ir) cells were found within the largest S-shaped bodies. Histamine was found to appear rapidly between the 18th and 20th embryonic days in the convoluted tubules of the kidneys. On postnatal day 0 (P0), the distal convoluted tubules and collecting ducts exhibited bright fluorescence, the intensity of which decreased quickly so that it was faint on day P4 and absent at later stages. In kidneys of pregnant rats HA-ir was found in the epithelium of both the Bowman's capsule, collecting ducts and in a few cells within the tubules. Nonuniform HA-ir was also detected within glomeruli. No evidence for the presence of L-histidine decarboxylase mRNA in kidneys of fetuses or pregnant rats was seen. It is concluded that distinct structures in the developing rat kidney contain histamine during a period around birth from day E20 to day P4. In the pregnant rat, the epithelium that is in direct contact with the urine flow is immunoreactive for histamine from day 16 to 20 of pregnancy. The results suggest that histamine is not synthesized locally in the kidneys but rather originates from other tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号