首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   21篇
  2013年   10篇
  2012年   3篇
  2011年   12篇
  2010年   13篇
  2009年   8篇
  2008年   11篇
  2007年   15篇
  2006年   15篇
  2005年   8篇
  2004年   19篇
  2003年   9篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
181.
Laminin-5 and α3β1 integrin promote keratinocyte survival; however, the downstream signaling pathways for laminin-5/α3β1 integrin-mediated cell survival had not been fully established. We report the unexpected finding of multiple interactions between 14-3-3 isoforms and proapoptotic proteins in the survival signaling pathway. Ln5-P4 motif within human laminin-5 α3 chain promotes cell survival and anti-apoptosis by inactivating Bad and YAP. This effect is achieved through the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes, which is initiated by α3β1 integrin and FAK/PI3K/Akt signaling. These complexes result in cytoplasmic sequestration of Bad and YAP and their subsequent inactivation. An increase in Akt1 activity in cells induces 14-3-3ζ and σ, p-Bad, and p-YAP, promoting cell survival, whereas decreasing Akt activity suppresses the same proteins and inhibits cell survival. Suppression of 14-3-3ζ with RNA-interference inhibits cell viability and promotes apoptosis. These results reveal a new mechanism of cell survival whereby the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes is initiated by laminin-5 stimulation via the α3β1 integrin and FAK/PI3K/Akt signaling pathways, thereby resulting in cell survival and anti-apoptosis.  相似文献   
182.
《Cytokine》2014,65(3):652-659
The transforming growth factor-beta 1 (TGFβ1) and NFκB pathways are important regulators of epidermal homeostasis, inflammatory responses and carcinogenesis. Previous studies have shown extensive crosstalk between these pathways that is cell type and context dependent, but this has not been well-characterized in epidermal keratinocytes. Here we show that in primary mouse keratinocytes, TGFβ1 induces NFκB-luciferase reporter activity that is dependent on both NFκB and Smad3. TGFβ1-induced NFκB-luciferase activity was blocked by the IκB inhibitor parthenolide, the IκB super-repressor, a dominant negative TGFβ1-activated kinase 1 (TAK1) and genetic deletion of NFκB1. Coexpression of NFκB p50 or p65 subunits enhanced NFκB-luciferase activity. Similarly, inhibition of the TGFβ1 type I receptor with SB431542 or genetic deletion of Smad3 blocked TGFβ1 induction of NFκB-luciferase. TGFβ1 rapidly induced IKK phosphorylation but did not cause a detectable decrease in cytoplasmic IκB levels or nuclear translocation of NFκB subunits, although EMSA showed rapid NFκB nuclear binding activity that could be blocked by SB431542 treatment. TNFα, a well characterized NFκB target gene was also induced by TGFβ1 and this was blocked in NFκB+/− and −/− keratinocytes and by the IκB super-repressor. To test the effects of the TGFβ1 pathway on a biologically relevant activator of NFκB, we exposed mice and primary keratinocytes in culture to UVB irradiation. In primary keratinocytes UVB caused a detectable increase in levels of Smad2 phosphorylation that was dependent on ALK5, but no significant increase in SBE-dependent gene expression. Inhibition of TGFβ1 signaling in primary keratinocytes with SB431542 or genetic deletion of Tgfb1 or Smad3 suppressed UVB induction of TNFα message. Similarly, UVB induction of TNFα mRNA was blocked in skin of Tgfb1+/− mice. These studies demonstrate that intact TGFβ1 signaling is required for NFκB-dependent gene expression in mouse keratinocytes and skin and suggest that a convergence of these pathways in the nucleus rather than the cytoplasm may be critical for regulation of inflammatory pathways in skin by TGFβ1.  相似文献   
183.
Direct cell-cell contact between melanocytes and keratinocytes has been shown to play an important role in the regulation of human melanocyte function and skin pigmentation. An important role for the calcium-dependent epithelium-specific cell adhesion molecule, E-cadherin, in melanocyte-keratinocyte adhesion was suggested previously. To further clarify regulation of E-cadherin-mediated melanocyte-keratinocyte interactions, we investigated the effects of physiological (Ca2+) and environmental (ultraviolet B [UVB] radiation) stimuli on the expression and functional activity of E-cadherin in melanocyte-keratinocyte adhesion. Expression of E-cadherin mRNA was detected by Northern blot analysis in cultured normal human melanocytes at levels similar to those in keratinocytes. Flow cytometry analysis with anti-human and anti-mouse-E-cadherin antibodies (anti-uvomorulin and ECCD-2) showed that cultured normal human keratinocytes, melanocytes, and two metastatic melanoma cell lines express E-cadherin strongly on the cell surfaces. Melanocyte adhesion, particularly to differentiating keratinocytes (cultured in 1.2 mM calcium) but not to proliferating keratinocytes or to fibroblasts, was decreased by 41.7 ± 4.5% in the absence of 1 mM Ca2+ during the binding assay. Addition of anti-mouse-E-cadherin antibody (ECCD-1) to the binding assay inhibited the adhesion of melanocytes to differentiating keratinocytes by 88.2 ± 1.1%, while addition of anti-P-cadherin antibody (PCD-1) had no effect. The levels of E-cadherin expression in melanocytes were not changed by the presence of calcium (1 mM) in the medium or by UVB irradiation (20 mJ/cm2) for one day before flow cytometry analysis. Moreover, these treatments had no effect on melanocyte-keratinocyte adhesion. These results demonstrate that E-cadherin is strongly involved in melanocyte adhesion to keratinocytes and suggest the implication of E-cadherin in the overall regulation of the skin pigmentary system.  相似文献   
184.
Interactions between melanocytes and keratinocytes in the skin suggest bi‐directional interchanges between these two cell types. Thus, melanocytes cultured alone may not accurately reflect the physiology of the skin and the effects of physiological regulators in vivo, because they do not consider possible interactions with keratinocytes. As more and more pigment genes are identified and cloned, the characterization of their functions becomes more of a challenge, particularly with respect to their roles in the processing and transport of melanosomes and their transfer to keratinocytes. Immortalized melanocytes mutant at these loci are now being routinely generated from mice, but interestingly, successful co‐culture of murine melanocytes and keratinocytes is very difficult compared with their human counterparts. Thus, we have now optimized co‐culture conditions for murine melanocytes and keratinocytes so that pigmentation and the effects of specific mutations can be studied in a more physiologically relevant context.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号