首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2467篇
  免费   181篇
  国内免费   312篇
  2960篇
  2024年   18篇
  2023年   54篇
  2022年   78篇
  2021年   89篇
  2020年   90篇
  2019年   132篇
  2018年   148篇
  2017年   79篇
  2016年   77篇
  2015年   61篇
  2014年   128篇
  2013年   117篇
  2012年   83篇
  2011年   82篇
  2010年   102篇
  2009年   115篇
  2008年   132篇
  2007年   123篇
  2006年   111篇
  2005年   93篇
  2004年   71篇
  2003年   83篇
  2002年   72篇
  2001年   51篇
  2000年   41篇
  1999年   36篇
  1998年   49篇
  1997年   37篇
  1996年   36篇
  1995年   50篇
  1994年   42篇
  1993年   46篇
  1992年   32篇
  1991年   16篇
  1990年   14篇
  1989年   30篇
  1988年   22篇
  1987年   27篇
  1986年   20篇
  1985年   30篇
  1984年   59篇
  1983年   35篇
  1982年   26篇
  1981年   33篇
  1980年   24篇
  1979年   30篇
  1978年   7篇
  1977年   6篇
  1976年   11篇
  1972年   3篇
排序方式: 共有2960条查询结果,搜索用时 0 毫秒
21.
The amino-terminal sequences have been determined by Edman degradation for the reaction center polypeptides from a carotenoidless mutant of Rhodopseudomonas capsulata. Individual polypeptides were isolated by preparative electrophoresis and electroelution. By comparison with the sequences deduced from the DNA (Youvan, D.C., Alberti, M., Begush, H., Bylina, E.J. and Hearst, J.E. (1984) Proc. Natl. Acad. Sci. USA 81, 189–192) we conclude that the M and L subunits are processed so as to remove the amino-terminal methionine, whereas the H subunit is not processed at the amino-terminus after translation. None of the subunits is synthesized with a significant amino-terminal extension peptide.  相似文献   
22.
The 688 nm absorption changes (ΔA688), indicating the photochemical turnover of chlorophyll aII (Chl aII) have been investigated under repetitive laser flash excitation conditions in spinach chlorplasts. It was found that under steady state conditions about 50–60% of the photo-oxidized primary donor of Photosystem II (PS II), Chl a+II, becomes re-reduced with a biphasic kinetics in the nanosecond time scale with half-life times of about 50 ns and 400 ns. The remaining Chl a+II becomes re-reduced in the microsecond range.  相似文献   
23.
The orientation of pigments and pigment-protein complexes of the green photosynthetic bacterium Prosthecochloris aestuarii was studied by measurement of linear dichroism spectra at 295 and 100 K. Orientation of intact cells and membrane vesicles (Complex I) was obtained by drying on a glass plate. The photochemically active pigment-protein complexes (photosystem-protein complex and reaction center pigment-protein complex) and the antenna bacteriochlorophyll a protein were oriented by pressing a polyacrylamide gel. The data indicate that the near-infrared transitions (Qy) of bacteriochlorophyll c and most bacteriochlorophyll a molecules have a relatively parallel orientation to the membrane, whereas the Qy transitions of the bacteriochlorophyll a in the antenna protein are oriented predominantly perpendicularly to the membrane. Carotenoids and the Qx transitions (590–620 nm) of bacteriochlorophyll a, not belonging to the bacteriochlorophyll a protein, have a relatively perpendicular orientation to the membrane. The absorption and linear dichroism spectra indicate the existence of different pools of bacteriochlorophyll c in the chlorosomes and of carotenoid and bacteriopheophytin c in the cell membrane. The results suggest that the photosystem-protein and reaction center pigment-protein complexes are oriented with their short axes approximately perpendicular to the plane of the membrane. The symmetry axis of the bacteriochlorophyll a protein has an approximately perpendicular orientation.  相似文献   
24.
Lewis J. Feldman 《Planta》1979,145(4):315-321
Removal of the quiescent center (QC) from the root apex of maize (Zea mays L., cv. Kelvedon 33) initiates a set of events which culiminate in the regeneration of an intact apex with a newly formed QC. Concomitant with the formation of a new QC is a marked reduction in extractable cytokinins in the tissue of the proximal meristem. Replacing the excised QC with a Dowex (acidic cation-exchange resin) bead affects both root growth and QC regeneration. Root growth is inhibited by plain Dowex beads and Dowex beads treated with zeatin; this inhibition is reversed if the beads have been treated with CaCl2 (±zeatin). Dowex beads treated with zeatin delay the formation of a new QC; this effect is the same whether or not the beads also contain CaCl2. The results of this investigation support the notions that cytokinin biosynthesis in roots is a result of activities of both the QC and the proximal meristem, and that cytokinins, at least if supplied exogenously, can play a role in root morphogenesis by delaying the regeneration of the QC.Abbreviations used throughout the text PM proximal meristem - QC quiescent center - RC root cap  相似文献   
25.
The properties of Photosystem II electron donation were investigated by EPR spectrometry at cryogenic temperatures. Using preparations from mutants which lacked Photosystem I, the main electron donor through the Photosystem II reaction centre to the quinone-iron acceptor was shown to be the component termed Signal II. A radical of 10 G line width observed as an electron donor at cryogenic temperatures under some conditions probably arises through modification of the normal pathway of electron donation. High-potential cytochrome b-559 was not observed on the main pathway of electron donation. Two types of PS II centres with identical EPR components but different electron-transport kinetics were identified, together with anomalies between preparations in the amount of Signal II compared to the quinone-iron acceptor. Results of experiments using cells from mutants of Scenedesmus obliquus confirm the involvement of the Signal II component, manganese and high-potential cytochrome b-559 in the physiological process leading to oxygen evolution.  相似文献   
26.
Activation of microcarrier-attached lymphocytes in microgravity   总被引:1,自引:0,他引:1  
A technology has been developed to achieve optimal attachment of adhesion-independent lymphocytes to microcarrier beads. The activation of T-lymphocytes by concanavalin A was tested under microgravity conditions in an experiment carried out in space during the first Spacelab Life Science Mission. Activation, measured as the synthesis of deoxyribonucleic acid (DNA) and the production of interferon-gamma, more than doubled in attached lymphocytes in microgravity. The depression of the activation discovered in previous space experiments is due to an impairment not of the lymphocyte but of the macrophage function. The system described here may be useful for radiobiological investigations on the effect of high-energy particles and for testing the efficiency of the immune system in humans during the long-duration space flight planned in the future. The biotechnological significance of the increased lymphokine production in space remains to be assessed.  相似文献   
27.
Origin and early evolution of photosynthesis   总被引:12,自引:0,他引:12  
Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.Abbreviation Gyr gigayears  相似文献   
28.
John R. Bowyer  Antony R. Crofts 《BBA》1981,636(2):218-233
(1) Current models for the mechanism of cyclic electron transport in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata have been investigated by observing the kinetics of electron transport in the presence of inhibitors, or in photosynthetically incompetent mutant strains. (2) In addition to its well-characterized effect on the Rieske-type iron sulfur center, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) inhibits both cytochrome b50 and cytochrome b?90 reduction induced by flash excitation in Rps. sphaeroides and Rps. capsulata. The concentration dependency of the inhibition in the presence of antimycin (approx. 2.7 mol UHDBT/mol reaction center for 50% inhibition of extent) is very similar to that of its inhibition of the antimycin-insensitive phase of ferricytochrome c re-reduction. UHDBT did not inhibit electron transfer between the reduced primary acceptor ubiquinone (Q?I) and the secondary acceptor ubiquinone (QII) of the reaction center acceptor complex. A mutant of Rps. capsulata, strain R126, lacked both the UHDBT and antimycin-sensitive phases of cytochrome c re-reduction, and ferricytochrome b50 reduction on flash excitation. (3) In the presence of antimycin, the initial rate of cytochrome b50 reduction increased about 10-fold as the Eh(7.0) was lowered below 180 mV. A plot of the rate at the fastest point in each trace against redox potential resembles the Nernst plot for a two-electron carrier with Em(7.0) ≈ 125 ± 15 mV. Following flash excitation there was a lag of 100–500 μs before cytochrome b50 reduction began. However, there was a considerably longer lag before significant reduction of cytochrome c by the antimycin-sensitive pathway occurred. (4) The herbicide ametryne inhibited electron transfer between Q?I and QII. It was an effective inhibitor of cytochrome b50 photoreduction at Eh(7.0) 390 mV, but not at Eh(7.0) 100 mV. At the latter Eh, low concentrations of ametryne inhibited turnover after one flash in only half of the photochemical reaction centers. By analogy with the response to o-phenanthroline, it is suggested that ametryne is ineffective at inhibiting electron transfer from Q?I to the secondary acceptor ubiquinone when the latter is reduced to the semiquinone form before excitation. (5) At Eh(7.0) > 200 mV, antimycin had a marked effect on the cytochrome b50 reduction-oxidation kinetics but not on the cytochrome c and reaction center changes or the slow phase III of the electrochromic carotenoid change on a 10-ms time scale. This observation appears to rule out a mechanism in which cytochrome b50 oxidation is obligatorily and kinetically linked to the antimycin-sensitive phase of cytochrome c reduction in a reaction involving transmembrane charge transfer at high Eh values. However, at lower redox potentials, cytochrome b50 oxidation is more rapid, and may be linked to the antimycin-sensitive reduction of cytochrome c. (6) It is concluded that neither a simple linear scheme nor a simple Q-cycle model can account adequately for all the observations. Future models will have to take account of a possible heterogeneity of redox chains resulting from the two-electron gate at the level of the secondary quinone, and of the involvement of cytochrome b?90 in the rapid reactions of the cyclic electron transfer chain  相似文献   
29.
Uptake of Rb+ from a complete nutrient solution with 2.0 mM Rb+ was studied in roots of spring wheat seedlings ( Triticum aestivum L. cv. Svenno) with different K+ levels. The relationship between Rb+ uptake and concentration of K+ in the roots indicated a negative feedback mechanism operating through allosteric control. The Rb+ uptake process in root cells was divided into two steps: (1) binding of the ion in the free space, and (ii) transmembrane transport into the cytoplasm. Metabolic and non-metabolic components of uptake were separated by addition of the metabolic inhibitor 2,4-dinitrophenol (DNP) to the nutrient solution. It is suggested that metabolic Rb+ uptake requires energy in two uptake steps (for binding to the carrier entity in the free space and for transmembrane transport) or in one step only (for transmembrane transport), dependent on the K+ status of the roots. The change from metabolic to non-metabolic binding in the free space is accomplished by changing the conformational state of the carrier (slow/fast transitions). There may be a hysteretic effect on metabolic Rb+ uptake through a slow transition between carrier states. This is superimposed on the negative cooperativity, strengthening further cooperativity at intermediate K+ levels in the roots. Non-metabolic Rb+ uptake probably consists of two components, a carrier-mediated (facilitated diffusion) and a parallel diffusive component.  相似文献   
30.
John M. Olson 《BBA》1981,637(1):185-188
Two reaction center complexes prepared from cytoplasmic membranes of Chlorobium limicola f. thiosulfato-philum were compared by absorption and CD spectrophotometry. Bacteriopheophytin c (670 nm), which is optically active in one complex but not in the other, may serve as a secondary electron acceptor in the reaction center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号