首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  48篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1998年   2篇
  1992年   1篇
排序方式: 共有48条查询结果,搜索用时 0 毫秒
41.
Mass spectrometric analyses of lipopolysaccharide (LPS) from isogenic Escherichia coli strains with nonpolar mutations in the waa locus or overexpression of their cognate genes revealed that waaZ and waaS are the structural genes required for the incorporation of the third 3-deoxy-α-D-manno-oct-2-ulosonic acid (Kdo) linked to Kdo disaccharide and rhamnose, respectively. The incorporation of rhamnose requires prior sequential incorporation of the Kdo trisaccharide. The minimal in vivo lipid A-anchored core structure Kdo(2)Hep(2)Hex(2)P(1) in the LPS from ΔwaaO (lacking α-1,3-glucosyltransferase) could incorporate Kdo(3)Rha, without the overexpression of the waaZ and waaS genes. Examination of LPS heterogeneity revealed overlapping control by RpoE σ factor, two-component systems (BasS/R and PhoB/R), and ppGpp. Deletion of RpoE-specific anti-σ factor rseA led to near-exclusive incorporation of glycoforms with the third Kdo linked to Kdo disaccharide. This was accompanied by concomitant incorporation of rhamnose, linked to either the terminal third Kdo or to the second Kdo, depending upon the presence or absence of phosphoethanolamine on the second Kdo with truncation of the outer core. This truncation in ΔrseA was ascribed to decreased levels of WaaR glycosyltransferase, which was restored to wild-type levels, including overall LPS composition, upon the introduction of rybB sRNA deletion. Thus, ΔwaaR contained LPS primarily with Kdo(3) without any requirement for lipid A modifications. Accumulation of a glycoform with Kdo(3) and 4-amino-4-deoxy-l-arabinose in lipid A in ΔrseA required ppGpp, being abolished in a Δ(ppGpp(0) rseA). Furthermore, Δ(waaZ lpxLMP) synthesizing tetraacylated lipid A exhibited synthetic lethality at 21-23°C pointing to the significance of the incorporation of the third Kdo.  相似文献   
42.
Lipopolysaccharide is an essential component of the outer membrane of Gram-negative bacteria and consists of three elements: lipid A, the core oligosaccharide and the O-antigen. The inner core region is highly conserved and contains at least one residue of 3-deoxy-d-manno-octulosonate (Kdo). The first committed step of Kdo biosynthesis is the aldol-keto isomerisation of d-ribulose 5-phosphate to d-arabinose 5-phosphate catalyzed by arabinose 5-phosphate isomerase encoded in Escherichia coli by the kdsD gene.KdsD contains an N-terminal sugar isomerase (SIS) domain commonly found in phosphosugar isomerases but its three-dimensional structure is unknown.The structure of the KdsD SIS domain has been predicted by homology modeling using the hypothetical 3etn protein as a template. Moreover by sequence alignments, comparison with other sugar isomerases structurally related to KdsD, and site-directed mutagenesis we implicated four residues in KdsD activity or substrate recognition. A possible role of these residues in the catalysis is discussed.  相似文献   
43.
The rough type lipopolysaccharide isolated from Shewanella spp. strain MR-4 was analyzed using NMR, mass spectroscopy, and chemical methods. Two structural variants have been found, both contained 8-amino-3,8-dideoxy-d-manno-octulosonic acid and lacked l-glycero-d-manno-heptose. A minor variant of the LPS contained phosphoramide substituent.  相似文献   
44.
A reducing tetrasaccharide of the following structure was released by mild acid hydrolysis of R-type LPS from Shewanella putrefaciens strains NCIMB 10472 and 10473. The same tetrasaccharide containing acetal-linked open-chain GalNAc is present in the core region of LPS from S. oneidensis strain MR-1 and may be characteristic of genomic groups II and III of S. putrefaciens and related strains. (1S)-d-GalaNAc-(1-->4,6)-alpha-d-Galp-(1-->6)-alpha-d-Galp-(1-->3)-d-Gal.  相似文献   
45.
Plesiomonas shigelloides O17 LPS contains the same O-antigenic polysaccharide chain as a causative agent of dysentery, Shigella sonnei. This polysaccharide can be used as a component of a vaccine against dysentery. Core part of the P. shigelloides O17 LPS was studied using NMR and mass spectrometry and the following structure was proposed: Significant similarity of the P. shigelloides O17 LPS core with the structure of the P. shigelloides O54 core was observed.  相似文献   
46.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   
47.
The cell envelope of Gram-negative bacteria consists of two distinct membranes, the inner (IM) and the outer membrane (OM) separated by the periplasm. The OM contains in the outer leaflet the lipopolysaccharide (LPS), a complex lipid with important biological activities. In the host it elicits the innate immune response whereas in the bacterium it is responsible for the peculiar permeability barrier properties exhibited by the OM. The chemical structure of LPS and its biosynthetic pathways have been fully elucidated. By contrast only recently details of the transport and assembly of LPS into the OM have emerged. LPS is synthesized in the cytoplasm and at the inner leaflet of the IM and needs to cross two different compartments, the IM and the periplasm, to reach its final destination at the OM. This review focuses on recent studies that led to our present understanding of the protein machine implicated in LPS transport and in assembly at the cell surface.  相似文献   
48.
The lipid A of Rhizobium etli, a nitrogen-fixing plant endosymbiont, displays significant structural differences when compared to that of Escherichia coli. An especially striking feature of R. etli lipid A is that it lacks both the 1- and 4′-phosphate groups. The 4′-phosphate moiety of the distal glucosamine unit is replaced with a galacturonic acid residue. The dephosphorylated proximal unit is present as a mixture of the glucosamine hemiacetal and an oxidized 2-aminogluconate derivative. Distinct lipid A phosphatases directed to the 1 or the 4′-positions have been identified previously in extracts of R. etli and Rhizobium leguminosarum. The corresponding structural genes, lpxE and lpxF, respectively, have also been identified. Here, we describe the isolation and characterization of R. etli deletion mutants in each of these phosphatase genes and the construction of a double phosphatase mutant. Mass spectrometry confirmed that the mutant strains completely lacked the wild-type lipid A species and accumulated the expected phosphate-containing derivatives. Moreover, radiochemical analysis revealed that phosphatase activity was absent in membranes prepared from the mutants. Our results indicate that LpxE and LpxF are solely responsible for selectively dephosphorylating the lipid A molecules of R. etli. All the mutant strains showed an increased sensitivity to polymyxin relative to the wild-type. However, despite the presence of altered lipid A species containing one or both phosphate groups, all the phosphatase mutants formed nitrogen-fixing nodules on Phaseolus vulgaris. Therefore, the dephosphorylation of lipid A molecules in R. etli is not required for nodulation but may instead play a role in protecting the bacteria from cationic antimicrobial peptides or other immune responses of plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号