首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4493篇
  免费   581篇
  国内免费   1445篇
  2024年   37篇
  2023年   150篇
  2022年   175篇
  2021年   210篇
  2020年   243篇
  2019年   296篇
  2018年   306篇
  2017年   225篇
  2016年   230篇
  2015年   218篇
  2014年   253篇
  2013年   306篇
  2012年   217篇
  2011年   270篇
  2010年   230篇
  2009年   267篇
  2008年   283篇
  2007年   314篇
  2006年   288篇
  2005年   244篇
  2004年   238篇
  2003年   196篇
  2002年   164篇
  2001年   125篇
  2000年   107篇
  1999年   116篇
  1998年   112篇
  1997年   68篇
  1996年   82篇
  1995年   70篇
  1994年   49篇
  1993年   53篇
  1992年   40篇
  1991年   41篇
  1990年   46篇
  1989年   39篇
  1988年   35篇
  1987年   21篇
  1986年   23篇
  1985年   23篇
  1984年   17篇
  1983年   20篇
  1982年   22篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1974年   4篇
排序方式: 共有6519条查询结果,搜索用时 31 毫秒
891.
We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after growing either as free-standing trees in the field or as supported by stakes in a greenhouse. In free-standing trees, a 20 to 40% reduction in lignin content was associated with increased xylem vulnerability to embolism, shoot dieback and mortality. In staked trees, the decreased biomechanical demands on the xylem was associated with increases in the leaf area to sapwood area ratio and wood specific conductivity (k(s)), and with decreased leaf-specific conductivity (k(l)). These shifts in hydraulic architecture suggest that the bending stresses perceived during growth can affect traits important for xylem water transport. Severe 4CL-downregulation resulted in the patchy formation of discoloured, brown wood with irregular vessels in which water transport was strongly impeded. These severely 4CL-downregulated trees had significantly lower growth efficiency (biomass/leaf area). These results underscore the necessity of adequate lignification for mechanical support of the stem, water transport, tree growth and survival.  相似文献   
892.
Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate of electron transport (Jmax) and the maximum carboxylation rate of Rubisco (Vcmax), and the PSII performance showed a decreased quantum yield and increased energy dissipation. A parallel response pattern and reduced PSII performance at all three sites indicate that these responses take place in all leaves across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland.  相似文献   
893.
Aim Using dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in a tropical land‐bridge island system, we test for the small island effect (SIE) in the species–area relationship and evaluate its effects on species richness and community composition. We also examine the determinants of species richness across island size and investigate the traits of dung beetle species in relation to their local extinction vulnerability following forest fragmentation. Location Lake Kenyir, a hydroelectric reservoir in north‐eastern Peninsular Malaysia. Methods We sampled dung beetles using human dung baited pitfall traps on 24 land‐bridge islands and three mainland sites. We used regression tree analyses to test for the SIE, as well as species traits related to local rarity, as an indication of extinction vulnerability. We employed generalized linear models (GLMs) to examine determinants for species richness at different scales and compared the results with those from conventional linear and breakpoint regressions. Community analyses included non‐metric multidimensional scaling, partial Mantel tests, nestedness analysis and abundance spectra. Results Regression tree analysis revealed an area threshold at 35.8 ha indicating an SIE. Tree basal area was the most important predictor of species richness on small islands (<35.8 ha). Results from GLMs supported these findings, with isolation and edge index also being important for small islands. The SIE also manifested in patterns of dung beetle community composition where communities on small islands (<35.8 ha) departed from those on the mainland and larger islands, and were highly variable with no significant nestedness, probably as a result of unexpected species occurrences on several small islands. The communities exhibited a low degree of spatial autocorrelation, suggesting that dispersal limitation plays a part in structuring dung beetle assemblages. Species with lower baseline density and an inability to forage on the forest edge were found to be rarer among sites and hence more prone to local extinction. Main conclusions We highlight the stochastic nature of dung beetle community composition on small islands and argue that this results in reduced ecosystem functionality. A better understanding of the minimum fragment size required for retaining functional ecological communities will be important for effective conservation management and the maintenance of tropical forest ecosystem stability.  相似文献   
894.
Aim To calculate the degree to which differences between local and regional elevational species richness patterns can be accounted for by the effects of regional area. Location Five elevational transects in Costa Rica, Ecuador, La Réunion, Mexico and Tanzania. Methods We sampled ferns in standardized field plots and collated regional species lists based on herbarium and literature data. We then used the Arrhenius function S = cAz to correct regional species richness (S) for the effect of area (A) using three slightly different approaches, and compared the concordance of local and regional patterns prior to and after accounting for the effect of area on regional richness using linear regression analyses. Results We found a better concordance between local and regional elevational species richness after including the effect of area in the majority of cases. In several cases, local and regional patterns are very similar after accounting for area. In most of the cases, the maximum regional richness shifted to a higher elevation after accounting for area. Different approaches to correct for area resulted in qualitatively similar results. Main conclusions The differences between local and regional elevational richness patterns can at least partly be accounted for by area effects, suggesting that the underlying causes of elevational richness patterns might be the same at both spatial scales. Values used to account for the effect of area differ among the different study locations, showing that there is no generally applicable elevational species–area relationship.  相似文献   
895.
Tropical cloud forests are characterized by lower air temperature and high frequency of fog condensation at canopy level, as compared with forests at lower altitudes. Few studies have been conducted to understand differences of plant functional traits in relation to the environment in this kind of forest. In this paper, we explored the community-level differences of specific leaf area (SLA) and height of plants in relation to major environmental conditions between two adjacent tropical cloud forests on Hainan Island, South China. We measured the two functional traits for all individual plants within twenty-nine and thirty-two 10 m × 10 m plots located in a low altitude tropical montane evergreen forest (TMEF) and a high altitude tropical dwarf forest (TDF), respectively.The results showed that both mean SLA and height decreased from TMEF to TDF, while phenotypic plasticity for the two functional traits increased from TMEF to TDF. Correlation analysis and multiple regression analysis showed that the mean SLA and its plasticity were significantly correlated with both air temperature and soil phosphorus. The mean height was only significantly correlated with air temperature, but its plasticity was significantly correlated with both air temperature and soil phosphorus.Our results suggest that plants in dwarf tropical cloud forests have decreased SLA and height, correlated with less favorable soil and atmospheric conditions, with a higher plasticity of these traits, as compared with the tropical montane evergreen forest. Community-level differences in SLA and plant height thus can be taken as indicators characterizing plant distribution to different types of tropical cloud forests.  相似文献   
896.
897.
This mini-review summarizes studies my associates and I carried out that are relevant to the topic of the present volume [i.e. glutamate dehydrogenase (GDH)] using radioactive 13N (t1/2 9.96 min) as a biological tracer. These studies revealed the previously unrecognized rapidity with which nitrogen is exchanged among certain metabolites in vivo. For example, our work demonstrated that (a) the t1/2 for conversion of portal vein ammonia to urea in the rat liver is ∼10-11 s, despite the need for five enzyme-catalyzed steps and two mitochondrial transport steps, (b) the residence time for ammonia in the blood of anesthetized rats is ≤7-8 s, (c) the t1/2 for incorporation of blood-borne ammonia into glutamine in the normal rat brain is <3 s, and (d) equilibration between glutamate and aspartate nitrogen in rat liver is extremely rapid (seconds), a reflection of the fact that the components of the hepatic aspartate aminotransferase reaction are in thermodynamic equilibrium. Our work emphasizes the importance of the GDH reaction in rat liver as a conduit for dissimilating or assimilating ammonia as needed. In contrast, our work shows that the GDH reaction in rat brain appears to operate mostly in the direction of ammonia production (dissimilation). The importance of the GDH reaction as an endogenous source of ammonia in the brain and the relation of GDH to the brain glutamine cycle is discussed. Finally, our work integrates with the increasing use of positron emission tomography (PET) and nuclear magnetic resonance (NMR) to study brain ammonia uptake and brain glutamine, respectively, in normal individuals and in patients with liver disease or other diseases associated with hyperammonemia.  相似文献   
898.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   
899.
The degree to which fish diet differs by season and area, particularly over broad scales, was examined for the first time in temperate, contiguous north-west Atlantic Ocean waters by comparing food habit data for 10 species of fishes collected concurrently during the spring and autumn surveys in the U.S.A. (Gulf of Maine proper and Georges Bank) and in the summer survey in Canada (western Scotian Shelf and Bay of Fundy). For most species, there was a general concurrence among the three seasons and four areas: summer diets had the same dominant prey items as spring and autumn diets. Although a suite of multivariate analyses did elucidate some differences in specific proportions of the diet for these species across seasons and areas, the main prey did not substantially change for most of these species. These results suggest that there are (1) minimal differences in diet across season for these species at these taxonomic resolutions, (2) there are minimal differences in diet geographically for these species and (3) differences across species, as expected, are important. Many fisheries ecosystem and multispecies models are dependent on food habit data, where resolving seasonal and spatial differences in diet remains an important consideration; however, the present work implies that amalgamated estimates of diet from seasonal surveys may be a reasonable approach when no finer seasonal resolution exists, as long as due diligence is exercised.  相似文献   
900.
Drugs can affect function in proteins by modulating their flexibility. Despite this possibility, there are very few studies on how drug binding affects the dynamics of target macromolecules. FKBP12 (FK506 binding protein 12) is a prolyl cis-trans isomerase and a drug target. The immunosuppressant drug rapamycin exerts its therapeutic effect by serving as an adaptor molecule between FKBP12 and the cell proliferation regulator mTOR (mammalian target of rapamycin). To understand the role of dynamics in rapamycin-based immunosuppression and to gain insight into the role of dynamics in the assembly of supramolecular complexes, we used 15N, 13C, and 2H NMR spin relaxation to characterize FKBP12 along the binding coordinate that leads to cell cycle arrest. We show that sequential addition of rapamycin and mTOR leads to incremental rigidification of the FKBP12 backbone on the picosecond-nanosecond timescale. Both binding events lead to perturbation of main-chain and side-chain dynamics at sites distal to the binding interfaces, suggesting tight coupling interactions dispersed throughout the FKBP12-rapamycin interface. Binding of the first molecule, rapamycin, quenches microsecond-millisecond motions of the FKBP12 80's loop. This loop provides much of the surface buried at the protein-protein interface of the ternary complex, leading us to assert that preorganization upon rapamycin binding facilitates binding of the second molecule, mTOR. Widespread microsecond-millisecond motions of the backbone persist in the drug-bound enzyme, and we provide evidence that these slow motions represent coupled dynamics of the enzyme and isomerization of the bound drug. Finally, the pattern of microsecond-millisecond dynamics reported here in the rapamycin complex is dramatically different from the pattern in the complex with the structurally related drug FK506. This raises the important question of how two complexes that are highly isomorphic based on high-resolution static models have such different flexibilities in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号