首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4493篇
  免费   579篇
  国内免费   1449篇
  2024年   37篇
  2023年   150篇
  2022年   175篇
  2021年   210篇
  2020年   245篇
  2019年   296篇
  2018年   306篇
  2017年   225篇
  2016年   230篇
  2015年   218篇
  2014年   253篇
  2013年   306篇
  2012年   217篇
  2011年   270篇
  2010年   230篇
  2009年   267篇
  2008年   283篇
  2007年   314篇
  2006年   288篇
  2005年   244篇
  2004年   238篇
  2003年   196篇
  2002年   164篇
  2001年   125篇
  2000年   107篇
  1999年   116篇
  1998年   112篇
  1997年   68篇
  1996年   82篇
  1995年   70篇
  1994年   49篇
  1993年   53篇
  1992年   40篇
  1991年   41篇
  1990年   46篇
  1989年   39篇
  1988年   35篇
  1987年   21篇
  1986年   23篇
  1985年   23篇
  1984年   17篇
  1983年   20篇
  1982年   22篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1974年   4篇
排序方式: 共有6521条查询结果,搜索用时 15 毫秒
861.
以锡林郭勒草原胜利煤田为典型研究区,构建了由生态敏感性、自然与社会压力及生态恢复力3方面16个因子组成的生态脆弱性评估指标体系,基于专家打分法和层次分析法建立了生态脆弱性模型,借助遥感及地理信息工具完成了对区域生态脆弱性指数的计算,分析了土地利用与生态脆弱性的关系,并通过空间自相关分析对计算结果进行了全局及局部聚类检验.结果表明: 研究区脆弱性总体属于中等偏高水平;胜利煤田4个露天矿的开采导致采区脆弱性显著增加,由于矿井疏干水和人为活动的影响,矿区周边300~2000 m范围都演变为生态高脆弱性区;随着矿区的进一步开发,整个煤田都将转变为中度和重度脆弱区,而煤炭资源开采是导致区域脆弱性提高的主要因素.全区及局部聚类结果显示,该区域脆弱性空间分布有很好的聚类特征.降低矿区人口密度、控制草地载畜水平、控制建设用地和耕地比率是解决矿区社会经济压力的最佳途径,增加投入、提高植被恢复系数是改变区域生态脆弱性的根本措施.
  相似文献   
862.
玉米叶面积指数动态模拟的最适野外观测资料   总被引:2,自引:0,他引:2  
基于锦州农田生态系统野外观测站2005-2011年多个品种的玉米大田试验资料,结合已经建立的玉米叶面积指数动态普适模型,探讨了准确模拟玉米叶面积指数动态所需的最适野外观测资料.结果表明: 准确模拟玉米叶面积指数动态至少需要3年的野外观测数据,且每年在生育期内至少需要进行4次观测.玉米生育期内的理想观测应为在出苗后20 d左右进行第1次观测,此后每月观测1次.
  相似文献   
863.
范边  马克明 《生物多样性》2015,23(6):802-12
在城市用地和保护地都快速扩张的背景下, 保护地与城市之间的距离在急剧缩小, 然而这并未引起人们的足够关注。城市对保护地的负面影响具有尺度效应, 且随着距离的接近, 负面影响也将加剧, 因此保护地与城市距离的远近可成为衡量负面影响大小的重要依据。本文基于全球保护地和大城市及城市用地分布数据, 对全球、洲际、地区和国家尺度1950-2010年城市与保护地距离的变化进行分析。结果表明: (1)在4个尺度上, 保护地与城市的距离都在不断缩小。欧洲和西欧是保护地与城市距离最近的洲和地区, 而大洋洲和澳大利亚及新西兰则是距离最远的洲和地区。在面积排名前20的保护地大国中, 中国是保护地与城市平均最近距离最小的国家, 其与50万以上人口城市的平均最近距离在2010年仅为143.5 km。(2)根据城市与保护地距离的现状及其变化, 可将保护地排名前60的国家分成5类: (a)距离很近, 靠近速度慢, 如西欧国家; (b)距离近, 靠近速度适中, 如中国、美国; (c)距离较近, 靠近速度快, 如沙特阿拉伯、厄瓜多尔; (d)距离较远, 靠近速度较慢, 如巴西、加拿大、俄罗斯联邦; (e)距离远, 靠近速度较快, 如澳大利亚、非洲大多数国家。(3)全球范围内, 越来越多生物多样性较高的保护地将面临被城市影响的境地。该结果以期引起大家对全球保护地与城市距离急剧缩短现象的关注和警惕。  相似文献   
864.
中国共产党第十八届三中全会和《环境保护法》明确提出依法划定生态保护红线, 实施最为严格的源头保护制度。世界上大多数国家都实行了将天然或近天然的区域划作保护地、建立生态空间体系对物种及其生境进行保护。在国际上虽未有“生态保护红线”这一提法, 但是划定生态保护区域的做法是相似的。作者基于相关文献, 对世界自然保护联盟(IUCN)保护地系统, 以及美国、欧盟、俄罗斯、日本等地区和国家的生态保护地(区)体系的保护地面积和管理实践进行了系统梳理和总结。大多数国家的生态保护地(区)的面积在5-40%之间, 并建立了专门的保护管理职能部门或成立了多部门分工负责的管理体制, 根据人类活动强度的不同制定差异化的管控措施。对比我国现有保护地体系的空缺分析以及保护地分类管理中存在的问题, 本文提出了整合与优化我国现有各类保护区域, 通过重要性、敏感性评价对在生态系统服务功能、生物多样性和生境保护方面作用最为重要的土地优先划入生态保护红线内, 面积比例以占到陆地国土总面积的30%以上为宜。为严守生态保护红线, 根据我国现有部门职能分工, 建议强化环境保护部门对生态保护红线区域的统一监督管理职能, 制定生态保护红线管理办法, 在生态保护红线区域内实行分级分类管理。  相似文献   
865.
植物功能性状可反映植物对环境的适应。在祁连山高寒退化草地, 利用ArcGIS建立研究区域的数字高程模型, 提取坡向数据, 采用标准化主轴估计方法(standardized major axis estimation, SMA), 研究了不同坡向甘肃臭草(Melica przewalskyi)叶性状间的关系。结果表明: 1)甘肃臭草叶面积和叶体积在北坡最大, 东坡、西坡、南坡逐渐减小, 叶干质量无显著变化; 2)叶面积与叶干质量在北坡、东坡和西坡呈等速生长关系, 在南坡呈异速生长关系, 且叶干质量的增长速度大于叶面积的增长速度; 3)叶体积与叶干质量在4个坡向上呈异速生长关系, 且叶干质量的增长速度均小于叶体积的增长速度。甘肃臭草叶性状关系随坡向的变化反映了该物种在异质生境中具有较强的叶片形态可塑性, 从而有利于其适应和占据高寒退化生境。  相似文献   
866.
We quantied intraspecic variation and covariation of leaf mass per area (LMA), leaf dry matter concentration (LD), leaf frost sensitivity (LFS) and Fv/Fm of leaves of 8 Lithocarpus dealbatus populations across the geographical distribution from north to south to determine the magnitude and whether it is related to environmental conditions, latitude and mean annual temperature. The results showed that the total variation (coefcient of variation) of LMA, LD, LFS and Fv/Fm were 160%, 177%, 211% and 401% respectively. The total intraspecic variation was contributed by the difference among populations, individuals and leaves. The difference among populations accounted for the largest total variation in LMA, LD and Fv/Fm, whereas the difference among leaves accounted for the largest total variation in LFS. On population level, LMA was significantly positive related to the latitude and Fv/Fm was significantly negative, but LD and LFS were not related to the latitude. LMA decreased while Fv/Fm increased significantly with the increase of mean annual temperature. LD was a downward quadratic variation, and LFS was upward with the increase of mean annual temperature. The principal component analysis of four functional traits showed that no population was located nearer to the origin of the first and second principal component, and populations at the edge of distribution area located at both sides of the first principal component axis. The results suggested that the environmental variation in the distribution could cause intraspecic variation of functional traits. There is no population could represent a species in functional traits. When an average trait value for species is considered and trait comparisons are done among species, intraspecific variation of traits could not be ignored.  相似文献   
867.
Aims UV-B radiation is known to affect plant physiology and growth rate in ways that can influence community species composition and structure. Nevertheless, comparatively little is known about how UV-B radiation induced changes in the performance of individual species cascades to affect overall community properties. Because foliage leaves are primarily responsible for photosynthesis and carbon gain and are the major organ that senses and responds to UV-B radiation, we hypothesized that, under reduced UV-B radiation, species with larger leaf areas per plant would manifest higher growth rates and hence tend to improve their community status compared to species with smaller leaf areas per plant in herbaceous plant communities.Methods We tested this hypothesis by examining plant traits (leaf area per plant and plant height), plant growth rate (aboveground biomass per plant and plant biomass per area) and community status (species within-community relative biomass) for 19 common species in a two-year field experiment in an alpine meadow on Tibetan Plateau.Important findings Aboveground biomass per plant, as well as per area, progressively increased in a 39% reduced (relative to ambient) UV-B treatment during the experimental period. At the second year, 11 out of 19 species significantly or marginally significantly increased their plant height, leaf area per plant and aboveground biomass per plant. No species was negatively affected by reducing UV-B. As hypothesized, the increase in aboveground biomass per plant increased with increasing leaf area per plant, as indicated by cross-species regression analysis. Moreover, the change in species within-community status increased with increasing leaf area per plant. Our study demonstrates that UV-B radiation has differential effects on plant growth rate across species and hence significantly affects species composition and plant community structure. We suggest that UV-B radiation is an ecological factor structuring plant communities particularly in alpine and polar areas.  相似文献   
868.
Aims Exotic fast-growing tree species have been commonly planted as pioneer species to facilitate ecological restoration in South China. Their growth and resource utilization behavior related to intrinsic physiology and structural properties have profound influences on forest ecosystem. However, the contrastive research focusing on water utilization features along with xylem anatomical properties between native and exotic species is scarce in South China. The objective of this study is to investigate the sapwood anatomical characteristics and water utilization conditions of native and exotic fast-growing species, and to elucidate the relationship between sap-flux density and conduit features.Methods We measured sap-flux density, conduit length, diameter and density of four native species (Schima superba, Michelia macclurei, Castanopsis hystrix and Castanopsis fissa) and four exotic species (Eucalyptus citriodora, Eucalyptus urophylla × grandis, Acacia auriculaeformis and Acacia mangium). Sap flux density was measured based on the Granier's thermal dissipation probe method. The whole-tree water transport was quantified by multiplying sap-flux density by sapwood area. The measurements of conduit characteristics were conducted by using segregation and slice method.Important findings Sapwood area increased with the growing diameter at breast height (DBH) as a power function. Native species had a larger water-conducting tissue area than exotic species at the same DBH value when trees grew to a size with a certain value of DBH. The conduit diameter of exotic species was significantly larger than that of native species. Conversely, native species, such as S. superba and M. macclurei, had longer conduit length and higher conduit density than other tree species. Based on a physiological interpretation of the measured conduit characteristics, native tree species developed a safe water transport system while exotic fast-growing tree species come into being an efficient system instead. Water transport increased with the growing DBH as a power function, and the exponent for native species (1.60) was higher than that for exotic species (1.22). Under the combined impact of sap-flux density and sapwood area, native species presented a larger water transport at a larger DBH value, indicating that growth advantage of exotic fast-growing species might weaken as DBH increased.  相似文献   
869.
Trade‐off relationships are considered key to understanding the mechanisms supporting the coexistence of multiple species within kelp beds. Thus, information on trade‐offs is expected to contribute to conservation of kelp bed diversity. To test the existence of a trade‐off between productivity and thallus toughness, thallus traits and relationships between the traits were examined for seven species of Laminariales including 24 populations. For each population, photosynthetic capacity per unit biomass (as A mass) and nitrogen (i.e., photosynthetic nitrogen‐use efficiency, PNUE), nitrogen content (as N mass), thallus mass per unit thallus area (as TMA) and force required to penetrate the thallus (as F p, a common index of leaf toughness in land plants by punch test) were determined. A mass increased with increasing N mass. Blades with high N mass showed high A mass. These blades may invest a large proportion of nitrogen to the photosynthetic parts, and consequently exhibit high metabolic rates. Moreover, blades with high N mass tended to be associated with low TMA, and N mass decreased with increasing TMA. A significant negative correlation was observed between TMA and A mass because of the linkage of high A mass with high N mass and high N mass associated with low TMA, while a significant positive correlation was observed between TMA and F p. The two correlations indicate the existence of a trade‐off between productivity and thallus toughness in Laminariales. PNUE showed a significant negative correlation with TMA, which also showed a significant positive correlation with F p as the index of thallus toughness, and therefore a trade‐off relationship between productivity and thallus toughness.  相似文献   
870.
Climate projections from 20 downscaled global climate models (GCMs) were used with the 3‐PG model to predict the future productivity and water use of planted loblolly pine (Pinus taeda) growing across the southeastern United States. Predictions were made using Representative Concentration Pathways (RCP) 4.5 and 8.5. These represent scenarios in which total radiative forcing stabilizes before 2100 (RCP 4.5) or continues increasing throughout the century (RCP 8.5). Thirty‐six sites evenly distributed across the native range of the species were used in the analysis. These sites represent a range in current mean annual temperature (14.9–21.6°C) and precipitation (1,120–1,680 mm/year). The site index of each site, which is a measure of growth potential, was varied to represent different levels of management. The 3‐PG model predicted that aboveground biomass growth and net primary productivity will increase by 10%–40% in many parts of the region in the future. At cooler sites, the relative growth increase was greater than at warmer sites. By running the model with the baseline [CO2] or the anticipated elevated [CO2], the effect of CO2 on growth was separated from that of other climate factors. The growth increase at warmer sites was due almost entirely to elevated [CO2]. The growth increase at cooler sites was due to a combination of elevated [CO2] and increased air temperature. Low site index stands had a greater relative increase in growth under the climate change scenarios than those with a high site index. Water use increased in proportion to increases in leaf area and productivity but precipitation was still adequate, based on the downscaled GCM climate projections. We conclude that an increase in productivity can be expected for a large majority of the planted loblolly pine stands in the southeastern United States during this century.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号