首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   26篇
  国内免费   35篇
  2024年   1篇
  2023年   4篇
  2022年   15篇
  2021年   20篇
  2020年   19篇
  2019年   20篇
  2018年   18篇
  2017年   17篇
  2016年   16篇
  2015年   19篇
  2014年   40篇
  2013年   47篇
  2012年   26篇
  2011年   41篇
  2010年   43篇
  2009年   39篇
  2008年   37篇
  2007年   47篇
  2006年   31篇
  2005年   44篇
  2004年   30篇
  2003年   22篇
  2002年   12篇
  2001年   9篇
  2000年   4篇
  1999年   10篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   8篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有710条查询结果,搜索用时 187 毫秒
701.
LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs — polysiloxane-based and epoxy-based — are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.  相似文献   
702.
703.
Sinorhizobium meliloti is a soil bacterium accumulating glutamate, N-acetylglutaminyl glutamine amide and trehalose in hyperosmolarity. Besides these compatible solutes, we highlighted several compounds in S. meliloti Rm1021 wild-type strain. The purification and the structural characterization based on liquid chromatography evaporative light scattering detector, electrospray ionization high resolution mass spectrometry and nuclear magnetic resonance techniques showed they were four linear oligosaccharides composed of 3, 4, 5 and 6 glucose units all linked by α-(1 → 2) linkages except a terminal α-(1 ↔ 1) linkage. These oligosaccharides were cytoplasmic and were observed in several wild-type strains suggesting they were common features in S. meliloti strains grown in hyperosmolarity.  相似文献   
704.
The performances of five different ESI sources coupled to a polystyrene–divinylbenzene monolithic column were compared in a series of LC‐ESI‐MS/MS analyses of Escherichia coli outer membrane proteins. The sources selected for comparison included two different modifications of the standard electrospray source, a commercial low‐flow sprayer, a stainless steel nanospray needle and a coated glass Picotip. Respective performances were judged on sensitivity and the number and reproducibility of significant protein identifications obtained through the analysis of multiple identical samples. Data quality varied between that of a ground silica capillary, with 160 total protein identifications, the lowest number of high quality peptide hits obtained (3012), and generally peaks of lower intensity; and a stainless steel nanospray needle, which resulted in increased precursor ion abundance, the highest‐quality peptide fragmentation spectra (5414) and greatest number of total protein identifications (259) exhibiting the highest MASCOT scores (average increase in score of 27.5% per identified protein). The data presented show that, despite increased variability in comparative ion intensity, the stainless steel nanospray needle provides the highest overall sensitivity. However, the resulting data were less reproducible in terms of proteins identified in complex mixtures – arguably due to an increased number of high intensity precursor ion candidates.  相似文献   
705.
This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addition reaction. Strain-to-failure and glass transition behavior were investigated as a function of crosslinking monomer, pentaerythritol tetrakis(3-mercaptopropionate) (PETMP). An example non-stoichiometric system of 15 mol% PETMP thiol groups and an excess of 15 mol% acrylate groups was used to demonstrate the robust nature of the material. The LCE formed an aligned and transparent monodomain when stretched, with a maximum failure strain over 600%. Stretched LCE samples were able to demonstrate both stress-driven thermal actuation when held under a constant bias stress or the shape-memory effect when stretched and unloaded. A permanently programmed monodomain was achieved via a second-stage photopolymerization reaction of the excess acrylate groups when the sample was in the stretched state. LCE samples were photo-cured and programmed at 100%, 200%, 300%, and 400% strain, with all samples demonstrating over 90% shape fixity when unloaded. The magnitude of total stress-free actuation increased from 35% to 115% with increased programming strain. Overall, the two-stage TAMAP methodology is presented as a powerful tool to prepare main-chain LCE systems and explore structure-property-performance relationships in these fascinating stimuli-sensitive materials.  相似文献   
706.
Subversion of genome integrity fuels cellular adaptation and is a prerequisite for organismal evolution, yet genomic lesions are also the harmful driving force of cancer and other age-related human diseases. Genome integrity maintenance is inherently linked to genome organization and nuclear architecture, which are substantially remodeled during the cell cycle. Here we discuss recent findings on how actively dividing cells cope with endogenous genomic lesions that occur frequently at repetitive, heterochromatic, and late replicating regions as byproducts of genome duplication. We discuss how such lesions, rather than being resolved immediately when they occur, are dealt with in subsequent cell cycle phases, and even after mitotic cell division, and how this in turn affects genome organization, stability, and function.  相似文献   
707.
The use of organic fertilizers and liquid supplements for crop production is rapidly growing as an alternative system to conventional agriculture. However, very little is known about the public health issues related to pathogens. This study endeavors to identify the important zoonotic pathogens with the current molecular diagnostic tools, Loop-mediated isothermal amplification (LAMP) and Recombinase polymerase amplification (RPA), against the conventional pathogen detection. These cost-effective molecular techniques have proven to be confirmatory tests of the target pathogens present in organic fertilizers and liquid supplements, which recommends an advancement for the comprehensive field surveillance-response approach in many developing countries with resource-limited settings quality assurance and safety implementation of organic biosolids for sustainable agricultural farming.  相似文献   
708.
Chlorpromazine has been shown, in the present study, to generate a liquid membrane at an interface in accordance with Kesting's hypothesis [5]. The specific orientation of chlorpromazine molecules in a liquid membrane with hydrophobic ends facing the permeable substances has been found to reduce the permeability of catecholamines and neuroiransmitter amino acids. This observation is discussed in the light of the orientation of receptor proteins in general. The data on transport of catecholamines and neurotransmitter amino acids are discussed in the context of the mechanism of action of chlorpromazine.  相似文献   
709.
Histonic chromatin with a relatively high-protein content (RPC of about 1) is compared with naturally occurring chromatins of low-protein contents (RPCs of less than 0.5). The features of these chromatins, with respect to compaction and condensation, are discussed. Liquid crystalline chromatin, as found in dinoflagellates and phage heads, can apparently only be formed by condensation of chromatin of low-protein content and when it is not supercoiled. With histonic chromatin, liquid crystals are never found. Chromatins with low-protein contents might also form compactosomes (or 'labile nucleosomes'), as, for instance, in bacteria. They are forms of supercoiled DNA without a protein core and are so labile that they are difficult to study and even to detect. Chemical fixatives, as commonly used for electron microscopy, do not cross-link the chromatins of low-protein content, a feature which they share with naked DNA. It is postulated that these fixatives even relax the existing supercoil, which seems to be preserved after cryofixation only.  相似文献   
710.
Currently, the challenges of contemporary oncology are focused mainly on the development of personalized medicine and precise treatment, which could be achieved through the use of molecular biomarkers. One of the biological molecules with great potential are circulating free RNAs (cfRNAs) which are present in various types of body fluids, such as blood, serum, plasma, and saliva. Also, different types of cfRNA particles can be distinguished depending on their length and function: microRNA (miRNA), PIWI-interacting RNA (piRNA), tRNA-derived RNA fragments (tRFs), circular RNA (circRNA), long non-coding RNA (lncRNA), and messenger RNA (mRNA). Moreover, cfRNAs occur in various forms: as a free molecule alone, in membrane vesicles, such as exosomes, or in complexes with proteins and lipids. One of the modern approaches for monitoring patient's condition is a "liquid biopsy" that provides a non-invasive and easily available source of circulating RNAs. Both the presence of specific cfRNA types as well as their concentration are dependent on many factors including cancer type or even reaction to treatment. Despite the possibility of using circulating free RNAs as biomarkers, there is still a lack of validated diagnostic panels, defined protocols for sampling, storing as well as detection methods.In this work we examine different types of cfRNAs, evaluate them as possible biomarkers, and analyze methods of their detection. We believe that further research on cfRNA and defining diagnostic panels could lead to better and faster cancer identification and improve treatment monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号