首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3620篇
  免费   223篇
  国内免费   163篇
  2024年   4篇
  2023年   36篇
  2022年   50篇
  2021年   80篇
  2020年   87篇
  2019年   121篇
  2018年   112篇
  2017年   93篇
  2016年   95篇
  2015年   75篇
  2014年   177篇
  2013年   197篇
  2012年   133篇
  2011年   216篇
  2010年   166篇
  2009年   214篇
  2008年   251篇
  2007年   246篇
  2006年   262篇
  2005年   204篇
  2004年   172篇
  2003年   155篇
  2002年   142篇
  2001年   80篇
  2000年   80篇
  1999年   75篇
  1998年   87篇
  1997年   50篇
  1996年   49篇
  1995年   38篇
  1994年   37篇
  1993年   31篇
  1992年   40篇
  1991年   15篇
  1990年   10篇
  1989年   14篇
  1988年   6篇
  1987年   13篇
  1986年   8篇
  1985年   12篇
  1984年   14篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   9篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   3篇
排序方式: 共有4006条查询结果,搜索用时 406 毫秒
71.
Oncoproteomics is the term used to describe the application of proteomic technologies in oncology and parallels the related field of oncogenomics. It is now contributing to the development of personalized management of cancer. Proteomic technologies are used for the identification of biomarkers in cancer, which will facilitate the integration of diagnosis and therapy of cancer. Molecular diagnostics, laser capture microdissection and protein biochips are among the technologies that are having an important impact on oncoproteomics. The discovery of protein patterns developed by the US Food and Drug Administration/National Cancer Institute Clinical Proteomics Program is capable of distinguishing cancer and disease-free states with high sensitivity and specificity and will also facilitate the development of personalized therapy of cancer. Examples of application are given for breast and prostate cancer and a selection of companies and their collaborations that are developing application of proteomics to personalized treatment of cancer are discussed. Continued refinement of techniques and methods to determine the abundance and status of proteins in vivo holds great promise for the future study of normal cells and the pathology of associated neoplasms. Personalized cancer therapy is expected to be in the clinic by the end of the first decade of the 21st century.  相似文献   
72.
News in Brief     
Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.  相似文献   
73.
Evaluation of: Wulfkuhle JD, Berg D, Wolff C et al. Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin. Cancer Res. 18(23), 6426–6435 (2012).

Exhaustive characterization and mapping of pivotal molecules and downstream effectors deregulated in breast cancer is of fundamental clinical value to define the most effective therapy. Wulfkuhle et al. applied reverse-phase protein microarray, a highly sensitive immunoassay able to perform quantitative and multiplexed analysis of total and/or modified cellular proteins, to assess protein levels and activation/phosphorylation status of the HER family (EGFR, HER2, HER3) and downstream signaling molecules in HER2+ and HER2- breast cancers. The research was performed using laser capture microdissected tumor epithelial cells from frozen samples and formalin-fixed paraffin embedded specimens, which were also analyzed by immunohistochemistry (IHC) and FISH. This study identified a subgroup of IHC/FISH/HER2- patients with HER2 activation/phosphorylation levels comparable with those obtained from IHC/FISH/HER2+ tumors. HER2 signaling activation was independent from total HER2 expression and involved HER3 and EGFR activation. These findings indicate that molecular characterization by reverse-phase protein microarray of HER2 and its partners/effectors in the signaling cascade enables the identification of a subgroup of IHC/FISH/HER2- patients showing HER2 signaling activation. These patients, currently excluded from targeted therapy administration, could potentially benefit from this and it could improve prognosis and survival.  相似文献   
74.
Abstract

Objectives

Regular intake of green tea associates with lower DNA damage and increased resistance of DNA to oxidant challenge. However, in vitro pro-oxidant effects of green tea have been reported. Both effects could be mediated by hydrogen peroxide (H2O2) which is generated by autoxidation of tea catechins. In large amounts, H2O2 is genotoxic, but low concentrations could activate the redox-sensitive antioxidant response element (ARE) via the Keap-1/Nrf2 redox switch, inducing genoprotective adaptations. Our objective was to test this hypothesis.

Methods

Peripheral lymphocytes from healthy volunteers were incubated for 30 minutes at 37°C in freshly prepared tea solutions (0.005, 0.01, 0.05%w/v (7, 14, 71 µmol/l total catechins) in phosphate buffered saline (PBS), with PBS as control) in the presence and absence of catalase (CAT). H2O2 in tea was measured colorimetrically. Oxidation-induced DNA lesions were measured by the Fpg-assisted comet assay.

Results

H2O2 concentrations in 0.005, 0.01, and 0.05% green tea after 30 minutes at 37°C were, respectively, ~3, ~7, and ~52 µmol/l. Cells incubated in 0.005 and 0.01% tea showed less (P < 0.001) DNA damage compared to control cells. Cells treated with 0.05% green tea showed ~50% (P < 0.001) more DNA damage. The presence of CAT prevented this damage, but did not remove the genoprotective effects of low-dose tea. No significant changes in expression of ARE-associated genes (HMOX1, NRF2, KEAP1, BACH1, and hOGG1) were seen in cells treated with tea or tea + CAT.

Conclusion

Genoprotection by low-dose green tea could be due to direct antioxidant protection by green tea polyphenols, or to H2O2-independent signalling pathways.  相似文献   
75.

Background

Aspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores.

Methods

Using BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G+ neutrophils and MHC II+ antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways.

Results

Allergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24 hours post-conidia application.

Conclusions

Aspiration of allergen to sensitized mice enhanced the ingestion potential of conducting airway neutrophils. Such activation primes neutrophils so that they are sufficient to control dissemination of non-germinating A. fumigatus conidia. At the same time, it can be a reason for the development of sensitivity to fungi and subsequent asthma exacerbation.  相似文献   
76.
Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O2 pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO2, Al2O3, WO3 and Ag4O4.  相似文献   
77.
Cerebral amyloid angiopathy is caused by deposition of the amyloid β-peptide which consists of mainly 39–40 residues to the cortical and leptomeningeal vessel walls. There are no definite in vitro systems to support the hypothesis that the vascular basement membrane may act as a scaffold of amyloid β-peptide carried by perivascular drainage flow and accelerate its amyloid fibril formation in vivo. We previously reported the critical roles of interfaces and agitation on the nucleation of amyloid fibrils at low concentrations of amyloid β-peptide monomers. Here, we reproduced the perivascular drainage flow in vitro by using N-hydroxysuccinimide-Sepharose 4 Fast flow beads as an inert stirrer in air-free wells rotated at 1 rpm. We then reproduced the basement membranes in the media of cerebral arteries in vitro by conjugating Matrigel and other proteins on the surface of Sepharose beads. These beads were incubated with 5 μM amyloid β(1–40) at 37 °C without air, where amyloid β(1–40) alone does not form amyloid fibrils. Using the initiation time of fibril growth kinetics (i.e., the lag time of fibril growth during which nuclei, on-pathway oligomers and protofibrils are successively formed) as a parameter of the efficiency of biological molecules to induce amyloid fibril formation, we found that basement membrane components including Matrigel, laminin, fibronectin, collagen type IV and fibrinogen accelerate the initiation of amyloid β-peptide fibril growth in vitro. These data support the essential role of vascular basement membranes in the development of cerebral amyloid angiopathy.  相似文献   
78.
Over the past two decades, hydrogen exchange mass spectrometry (HXMS) has achieved the status of a widespread and routine approach in the structural biology toolbox. The ability of hydrogen exchange to detect a range of protein dynamics coupled with the accessibility of mass spectrometry to mixtures and large complexes at low concentrations result in an unmatched tool for investigating proteins challenging to many other structural techniques. Recent advances in methodology and data analysis are helping HXMS deliver on its potential to uncover the connection between conformation, dynamics and the biological function of proteins and complexes. This review provides a brief overview of the HXMS method and focuses on four recent reports to highlight applications that monitor structure and dynamics of proteins and complexes, track protein folding, and map the thermodynamics and kinetics of protein unfolding at equilibrium. These case studies illustrate typical data, analysis and results for each application and demonstrate a range of biological systems for which the interpretation of HXMS in terms of structure and conformational parameters provides unique insights into function. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   
79.

Background

Campylobacter jejuni is an important food-borne and zoonotic pathogen with a worldwide distribution. Humans and chickens are hosts of this pathogen. At present, there is no ideal vaccine for controlling human campylobacteriosis or the carriage of C. jejuni by chickens. Bacterial in vivo-induced antigens are useful as potential vaccine candidates and biomarkers of virulence.

Methods

In this study, we developed a novel systematic immunoproteomics approach to identify in vivo-induced antigens among the total cell proteins of C. jejuni using pre-adsorbed sera from patients infected with C. jejuni.

Results

Overall, 14 immunoreactive spots were probed on a PVDF membrane using pre-adsorbed human sera against C. jejuni. Then, we excised these protein spots from a duplicate gel and identified using MALDI–TOF MS. In total, 14 in vivo-induced antigens were identified using PMF and BLAST analysis. The identified proteins include CadF (CadF-1 and CadF-2), CheW, TufB, DnaK, MetK, LpxB, HslU, DmsA, PorA, ProS, CJBH_0976, CSU_0396 and hypothetical protein cje135_05017. Real-time RT-PCR was performed on 9 genes to compare their expression levels in vivo and in vitro. The data showed that 8 of the 9 analyzed genes were significantly upregulated in vivo relative to in vitro.

Conclusion

We successfully developed a novel immunoproteomics method for identifying in vivo-induced Campylobacter jejuni antigens by using pre-adsorbed sera from infected patients.

General significance

This new analysis method may prove to be useful for identifying in vivo-induced antigens within any host infected by bacteria and will contribute to the development of new subunit vaccines.  相似文献   
80.
Abstract

The cotton aphid, Aphis gossypii Glover was found to be the only aphid species infesting the tested roselle varieties (Sudani, Masri and White), Hibiscus sabdariffa L. which were cultivated in El-Kanater El-khayria (about 30 km north Cairo) as ex situ old land. The vertical distribution of the whitefly, Bemisia tabaci (Genn.); the leafhopper, Empoasca spp. and the pink hibiscus mealy bug, Maconellicoccus hirsutus Green, as insect pests attacking this crop had been studied. Moreover, certain morphological characters and amino acids concentrations in the three varieties of roselle, were obtained. The obtained results indicated that the experimental insect pests severely attacked leaves of the stem nodes from the 8th to the 11th (counting from the top of the plant), whereas whitefly were more abundant on these nodes. All tested insect species were less abundant on the 4th stem node. This may be due to the extensive existence of gland hairs, that excrete some compound especially phenols that might prevent the insects from reproducing on the leaves. The opposite was, however, true for M. hirsutus as it did not attack Sudani and Masri varieties but the infestation occurred at the highest level on the White variety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号