首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3628篇
  免费   224篇
  国内免费   164篇
  4016篇
  2024年   10篇
  2023年   36篇
  2022年   53篇
  2021年   80篇
  2020年   88篇
  2019年   121篇
  2018年   112篇
  2017年   93篇
  2016年   95篇
  2015年   75篇
  2014年   177篇
  2013年   197篇
  2012年   133篇
  2011年   216篇
  2010年   166篇
  2009年   214篇
  2008年   251篇
  2007年   246篇
  2006年   262篇
  2005年   204篇
  2004年   172篇
  2003年   155篇
  2002年   142篇
  2001年   80篇
  2000年   80篇
  1999年   75篇
  1998年   87篇
  1997年   50篇
  1996年   49篇
  1995年   38篇
  1994年   37篇
  1993年   31篇
  1992年   40篇
  1991年   15篇
  1990年   10篇
  1989年   14篇
  1988年   6篇
  1987年   13篇
  1986年   8篇
  1985年   12篇
  1984年   14篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   9篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   3篇
排序方式: 共有4016条查询结果,搜索用时 15 毫秒
181.
Park SH  Oh HB  Seong WK  Kim CW  Cho SY  Yoo CK 《Proteomics》2007,7(20):3743-3758
Bacillus anthracis is a gram-positive bacterial organism responsible for anthrax. This organism has two pathogenic plasmids: pX01 and pX02. The genetic function of pX01, which comprises about 198 kb, is not known, except for a region called the pathogenic island, which contains three genes-pag, lef, and cya-that code for three toxic proteins. A 2-D difference gel electrophoresis (2-D DIGE) system was used to verify the existence of proteins controlled by the pX01 plasmid, and protein regulation data were obtained using DeCyder software. A total of 1728 proteins were identified in the wild-type strain of this organism and 1684 in the pX01 plasmid. Twenty-seven of these proteins disappeared and eight appeared when the pX01 plasmid was removed. An additional 52 proteins were downregulated and 15 were upregulated when this plasmid was removed. A total of 102 proteins have been identified using the MALDI-TOF method of analysis, including 49 whose functions are unknown. Among these, 31 participate in metabolic processes, two in cellular processes, 15 in the processing of genetic information, and five in the processing of extracellular information. Another seven proteins participate in bacterial virulence and pathogenesis. We investigated the functions of these proteins in other bacteria, particularly the B. anthracis derivative H9041. Bacterial growth differed between pX01+/pX02+ B. anthracis and its pX01-/pX02+ derivative as did the cytotoxicity of macrophages infected by pX01+/pX02+ B. anthracis and the pX01-pX02+ derivative. We also found that S100B protein levels increased in the host infected with pX01+/pX02+ B. anthracis or its pX01-/pX02+ derivative. These data suggest that the pX01 plasmid plays a key role in the regulation of protein functions in B. anthracis.  相似文献   
182.
利用野生青狗尾草N10为母本,谷子农家品种大青秸为父本,进行种间杂交,获得了3株杂种。杂种在农艺性状上表现为谷子和青狗尾草的种间类型,花器表现了雄性败育,但雌蕊发育正常,能接受外来花粉结实。细胞形态学观察表明,其雄性败育表现为单核小孢子典败。该谷子雄性不育材料的获得,为利用野生青狗尾草的细胞质培育谷子质核互作雄性不育系,进而为实现谷子三系配套杂种优势利用奠定了基础。  相似文献   
183.
In the present study, different water samples from Red Sea coastal area at Rabigh city, Saudi Arabia were studied for their dominant algal species. Microalgal isolation was carried out based on dilution method and morphologically examined using F/2 as a growth medium. Dry weight and main biochemical composition (protein, carbohydrates, lipids) of all species were performed at the end of the growth, and biodiesel characteristics were estimated. Nannochloropsis sp., Dunaliella sp., Tetraselmis sp., Prorocentrum sp., Chlorella sp., Nitzschia sp., Coscinodiscus sp., and Navicula sp. were the most dominant species in the collected water samples and were used for further evaluation. Nannochloropsis sp. surpassed all other isolates in concern of biomass production with the maximum recorded dry weight of 0.89 g L?1, followed by Dunaliella sp. (0.69 g L?1). The highest crude protein content was observed in Nitzschia sp. (38.21%) and Dunaliella sp. (18.01%), while Nannochloropsis sp. showed 13.38%, with the lowest recorded lipid content in Coscinodiscus sp. (10.09%). Based on the growth, lipid content, and biodiesel characteristics, the present study suggested Dunaliella sp. and Nitzschia sp. as promising candidates for further large-scale biodiesel production.  相似文献   
184.
There is a need for large-scale demonstrations to address the challenges and possibilities for upscaling of ecosystem restoration, and for learning and sharing knowledge across professions and habitats. Large-scale and complex restoration projects need new perspectives on goal formulation, indicators for success, and evaluation to encompass both scientific approaches and the tacit knowledge held by practitioners. The objective of this paper is to use the restoration of a 165 km2 former military training area in alpine central Norway into National Park to demonstrate the challenges of upscaling and integration. Main tasks were to remove roads and technical infrastructure, prepare for natural recovery and remove undetonated ordnance. In total, 19 indicators were used to evaluate the restoration outcome, related to four overall restoration goals formulated by the Norwegian Parliament: nature protection, considerable nature benefit, safe civilian use, and restoration back to natural state. Despite an overall linear project cycle, a dynamic and adaptive process of planning, implementation and evaluation was performed at the individual site scale. A dynamic dialogue between all involved professions allowed for exchanging scientific and tacit knowledge, and continuous improvement of solutions. The study demonstrated the relevance of qualitative assessments combined with quantitative indicators – i.e., use of expert opinions and the continuous evaluation to feed back into planning and improving the implementation of restoration measures. A “Green training” procedure was developed, linking top-down formally defined settings of the project with bottom-up hand-on solutions. This procedure can be directly transferred to other large-scale mitigation and restoration projects. Demonstration sites like the one described here, are valuable to develop an expanded vision of restoration to meet the UN Sustainable Goals.  相似文献   
185.
Ergothioneine (ERG) is an unusual sulfur-containing amino acid. It is a potent antioxidant, which shows great potential for ameliorating neurodegenerative and cardiovascular diseases. L-ergothioneine is rare in nature, with mushrooms being the primary dietary source. The chemical synthesis process is complex and expensive. Alternatively, ERG can be produced by fermentation of recombinant microorganisms engineered for ERG overproduction. Here, we describe the engineering of S. cerevisiae for high-level ergothioneine production on minimal medium with glucose as the only carbon source. To this end, metabolic engineering targets in different layers of the amino acid metabolism were selected based on literature and tested. Out of 28 targets, nine were found to improve ERG production significantly by 10%–51%. These targets were then sequentially implemented to generate an ergothioneine-overproducing yeast strain capable of producing 106.2 ± 2.6 mg/L ERG in small-scale cultivations. Transporter engineering identified that the native Aqr1 transporter was capable of increasing the ERG production in a yeast strain with two copies of the ERG biosynthesis pathway, but not in the strain that was further engineered for improved precursor supply. Medium optimization indicated that additional supplementation of pantothenate improved the strain's productivity further and that no supplementation of amino acid precursors was necessary. Finally, the engineered strain produced 2.39 ± 0.08 g/L ERG in 160 h (productivity of 14.95 ± 0.49 mg/L/h) in a controlled fed-batch fermentation without supplementation of amino acids. This study paves the way for the low-cost fermentation-based production of ergothioneine.  相似文献   
186.
187.
Combination of photosensitizers (PS) for photodynamic therapy with NO photodonors (NOPD) is opening intriguing horizons towards new and still underexplored multimodal anticancer and antibacterial treatments not based on “conventional” drugs and entirely controlled by light stimuli. In this contribution, we report an intriguing molecular hybrid based on a BODIPY light-harvesting antenna that acts simultaneously as PS and NOPD upon single photon excitation with the highly biocompatible green light. The presented hybrid offers a combination of superior advantages with respect to the other rare cases reported to date, meeting most of the key criteria for both PSs and NOPDs in the same molecular entity such as: (i) capability to generate 1O2 and NO with single photon excitation of biocompatible visible light, (ii) excellent 1O2 quantum yield and NO quantum efficiency, (iii) photogeneration of NO independent from the presence of oxygen, (iv) large light harvesting properties in the green region. Furthermore, this compound together with its stable photoproduct, is well tolerated by both normal and cancer cells in the dark and exhibits bimodal photomortality of cancer cells under green light excitation due to the combined action of the cytotoxic 1O2 and NO.  相似文献   
188.
Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer’s disease.  相似文献   
189.
Innovative therapeutic heterocycles having precisely thiadiazolyl-pyranopyrazole fragments were prepared by using the ecofriendly synthetic route. Entire compounds formed in quantitative yields. All the composites tested for their antimicrobial effectiveness against four microbial, two beneficial fungi’s and accurately measured the minimum inhibitory concentrations (MIC and MBC/MFC), along with some initial structure activity relationships (SARs) also discussed. From the biological outcomes, the motif 6f provided an outstanding activity against all six pathogens. The possible presence of a nitro substituent on this composite may undoubtedly enhance the activity. In addition, amalgams 6d, 6g and 6l displayed promising antimicrobial results. This may be justified to the presence of electron capture group attached to the benzene ring, while the combinations 6j and 6k were zero effect towards all bacterial strains. The other compounds were excellent to low antimicrobial efficiency. The intriguing point was observed that all the active compounds had in common immense antibacterial effectiveness on Gram-negative bacteria than Gram-positive one and more antifungal activity on A. niger compare to other fungus. All things considered and suggested that this outstanding green synthetic approach is used to develop biological active compounds. On top of that, biological results confirmed that these biologically energetic motifs suitable for additional preclinical examine with the aim of standing novel innovative drugs.  相似文献   
190.
Euglena-, diatom-, and algae-dominated biofilms are the principal producers of iron-rich biolaminates that result in biosedimentary structures, or stromatolites, in an acid mine drainage (AMD) environment in Indiana. These structures are considered trace fossils because they are produced by organism-sediment interactions and record physicochemical conditions of the environment. Our purpose was to link the biofilm types to specific micro- and micromorphological features and the physicochemical conditions under which they were formed. Analyses revealed that Euglena-dominated biofilm produced thin, porous microlaminae by trapping, binding, and relocating AMD precipitates as the biofilm kept pace with chemical sedimentation. More massive microlaminae were produced by high rates of chemical sedimentation brought on by increased discharge and dilution of acidity. Diatom- and algae-dominated biofilms produced thick, mm–cm-scale, porous, spongelike micro- to macrolaminae through oxygenic photosynthesis and/or metal uptake in extracellular polymeric substances, which promoted mineral precipitation on cell walls to create a rigid, porous structure. The variations in biolaminate textures within the stromatolites record seasonal changes in the microbial populations and physicochemical conditions of the AMD environment. These iron-rich stromatolites represent trace fossils that record morphological biosignatures of eukaryote-dominated microbial biofilms and may serve as appropriate proxies in the search for similar evidence of eukaryotic life in other iron-rich paleoenvironments, such as those on early Earth and Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号