首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3861篇
  免费   401篇
  国内免费   481篇
  2024年   28篇
  2023年   177篇
  2022年   185篇
  2021年   338篇
  2020年   245篇
  2019年   313篇
  2018年   213篇
  2017年   191篇
  2016年   171篇
  2015年   196篇
  2014年   274篇
  2013年   306篇
  2012年   176篇
  2011年   209篇
  2010年   171篇
  2009年   242篇
  2008年   251篇
  2007年   208篇
  2006年   153篇
  2005年   120篇
  2004年   111篇
  2003年   79篇
  2002年   67篇
  2001年   61篇
  2000年   24篇
  1999年   32篇
  1998年   38篇
  1997年   25篇
  1996年   18篇
  1995年   24篇
  1994年   20篇
  1993年   16篇
  1992年   16篇
  1991年   8篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有4743条查询结果,搜索用时 343 毫秒
891.
When growth regulatory genes are damaged in a cell, it may become cancerous. Current technological advances in the last decade have allowed the characterization of the whole genome of these cells by directly or indirectly measuring DNA changes. Complementary analyses were developed to make sense of the massive amounts of data generated. A large majority of these analyses were developed to construct interaction networks between genes from, primarily, expression array data. We review the current technologies and analyses that have developed in the last decade. We further argue that as cancer genomics evolves from single gene validations to gene network inferences, new analyses must be developed for the different technological platforms.  相似文献   
892.
893.
The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradients is subject to the interplay of biotic interactions in complement to abiotic filtering and stochastic forces. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose using food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant–herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve species distribution and community forecasts. The trophic interaction network between butterfly larvae and host plant was phylogenetically structured and driven by host plant nitrogen content allowing forecasting the food web model to unknown interactions links. This combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may occur. Our combined approach points toward a promising direction for modeling the spatial variation in entire species interaction networks.  相似文献   
894.
895.
《Developmental cell》2022,57(1):5-18.e8
  1. Download : Download high-res image (273KB)
  2. Download : Download full-size image
  相似文献   
896.
Taste perception plays an important role in the mediation of food choices in mammals. The first porcine taste receptor genes identified, sequenced and characterized, TAS1R1 and TAS1R3, were related to the dimeric receptor for umami taste. However, little is known about their regulatory network. The objective of this study was to unfold the genetic network involved in porcine umami taste perception. We performed a meta‐analysis of 20 gene expression studies spanning 480 porcine microarray chips and screened 328 taste‐related genes by selective mining steps among the available 12 320 genes. A porcine umami taste‐specific regulatory network was constructed based on the normalized coexpression data of the 328 genes across 27 tissues. From the network, we revealed the ‘taste module’ and identified a coexpression cluster for the umami taste according to the first connector with the TAS1R1/TAS1R3 genes. Our findings identify several taste‐related regulatory genes and extend previous genetic background of porcine umami taste.  相似文献   
897.
898.
Kinetic information during human gait can be estimated with inverse dynamics, which is based on anthropometric, kinematic, and ground reaction data. While collecting ground reaction data with a force plate is useful, it is costly and requires regulated space. The goal of this study was to propose a new, accurate methodology for predicting ground reaction forces (GRFs) during level walking without the help of a force plate. To predict GRFs without a force plate, the traditional method of Newtonian mechanics was used for the single support phase. In addition, an artificial neural network (ANN) model was applied for the double support phase to solve statically indeterminate structure problems. The input variables of the ANN model, which were selected to have both dependency and independency, were limited to the trajectory, velocity, and acceleration of the whole segment's mass centre to minimise errors. The predicted GRFs were validated with actual GRFs through a ten-fold cross-validation method, and the correlation coefficients (R) for the ground forces were 0.918 in the medial–lateral axis, 0.985 in the anterior–posterior axis, and 0.991 in the vertical axis during gait. The ground moments were 0.987 in the sagittal plane, 0.841 in the frontal plane, and 0.868 in the transverse plane during gait. The high correlation coefficients(R) are due to the improvement of the prediction rate in the double support phase. This study also proved the possibility of calculating joint forces and moments based on the GRFs predicted with the proposed new hybrid method. Data generated with the proposed method may thus be used instead of raw GRF data in gait analysis and in calculating joint dynamic data using inverse dynamics.  相似文献   
899.
Guchang Zhixie Wan (GZW) is a commonly used Chinese medicine for the treatment of ulcerative colitis (UC). This research explored the potential pharmacological mechanism of GZW in UC. The active ingredients, potential targets, and UC-related genes of GZW were retrieved from public databases. The pharmacological mechanisms including key components, potential targets and signal pathways were determined through bioinformatics analysis. The results of this study were verified through virtual molecular docking and cell experiments. Network analysis revealed that 26 active GZW compounds and 148 potential GZW target proteins were associated with UC. Quercetin, kaempferol and β-sitosterol were identified as the core active ingredients of GZW. IFNG, IL-1A, IL-1B, JUN, RELA, and STAT1 were indicated as key targets of GZW. These key targets have a strong affinity for quercetin, kaempferol, and β-sitosterol. GO and KEGG enrichment analysis showed that GZW target proteins are highly enriched in inflammatory, immune, and oxidative stress-related pathways. This study confirmed the therapeutic effect and revealed potential molecular mechanism of GZW on UC. And the protective effects of GZW on inflammatory bowel disease pathway were also revealed through STAT3/NF-κB/IL-6 pathway. The findings of this study enhanced our understanding of GZW in the treatment of UC and provided a feasible method for discovering potential drugs from traditional Chinese medicine formulations.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号