首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3882篇
  免费   398篇
  国内免费   484篇
  4764篇
  2024年   35篇
  2023年   181篇
  2022年   195篇
  2021年   338篇
  2020年   245篇
  2019年   313篇
  2018年   213篇
  2017年   191篇
  2016年   171篇
  2015年   196篇
  2014年   274篇
  2013年   306篇
  2012年   176篇
  2011年   209篇
  2010年   171篇
  2009年   242篇
  2008年   251篇
  2007年   208篇
  2006年   153篇
  2005年   120篇
  2004年   111篇
  2003年   79篇
  2002年   67篇
  2001年   61篇
  2000年   24篇
  1999年   32篇
  1998年   38篇
  1997年   25篇
  1996年   18篇
  1995年   24篇
  1994年   20篇
  1993年   16篇
  1992年   16篇
  1991年   8篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有4764条查询结果,搜索用时 15 毫秒
831.
Recent genomic projects have revealed the existence of an unexpectedly large amount of deleterious variability in the human genome. Several hypotheses have been proposed to explain such an apparently high mutational load. However, the mechanisms by which deleterious mutations in some genes cause a pathological effect but are apparently innocuous in other genes remain largely unknown. This study searched for deleterious variants in the 1,000 genomes populations, as well as in a newly sequenced population of 252 healthy Spanish individuals. In addition, variants causative of monogenic diseases and somatic variants from 41 chronic lymphocytic leukaemia patients were analysed. The deleterious variants found were analysed in the context of the interactome to understand the role of network topology in the maintenance of the observed mutational load. Our results suggest that one of the mechanisms whereby the effect of these deleterious variants on the phenotype is suppressed could be related to the configuration of the protein interaction network. Most of the deleterious variants observed in healthy individuals are concentrated in peripheral regions of the interactome, in combinations that preserve their connectivity, and have a marginal effect on interactome integrity. On the contrary, likely pathogenic cancer somatic deleterious variants tend to occur in internal regions of the interactome, often with associated structural consequences. Finally, variants causative of monogenic diseases seem to occupy an intermediate position. Our observations suggest that the real pathological potential of a variant might be more a systems property rather than an intrinsic property of individual proteins.  相似文献   
832.
Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA‐sequencing of the corpus callosum from patients with autism exhibited extensive gene mis‐expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology.  相似文献   
833.
Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0–5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus–bacteria relationships were more cross-linked than protist–bacteria relationships, suggestive of increased taxonomic specificity in virus–bacteria relationships. We also found that 80% of bacterial–protist and 74% of bacterial–viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance.  相似文献   
834.
High-latitude environments, such as the Antarctic McMurdo Dry Valley lakes, are subject to seasonally segregated light–dark cycles, which have important consequences for microbial diversity and function on an annual basis. Owing largely to the logistical difficulties of sampling polar environments during the darkness of winter, little is known about planktonic microbial community responses to the cessation of photosynthetic primary production during the austral sunset, which lingers from approximately February to April. Here, we hypothesized that changes in bacterial, archaeal and eukaryotic community structure, particularly shifts in favor of chemolithotrophs and mixotrophs, would manifest during the transition to polar night. Our work represents the first concurrent molecular characterization, using 454 pyrosequencing of hypervariable regions of the small-subunit ribosomal RNA gene, of bacterial, archaeal and eukaryotic communities in permanently ice-covered lakes Fryxell and Bonney, before and during the polar night transition. We found vertically stratified populations that varied at the community and/or operational taxonomic unit-level between lakes and seasons. Network analysis based on operational taxonomic unit level interactions revealed nonrandomly structured microbial communities organized into modules (groups of taxa) containing key metabolic potential capacities, including photoheterotrophy, mixotrophy and chemolithotrophy, which are likely to be differentially favored during the transition to polar night.  相似文献   
835.
836.
The tragedy of the commons predicts social collapse when public goods are jointly exploited by individuals attempting to maximize their fitness at the expense of other social group members. However, animal societies have evolved many times despite this vulnerability to exploitation by selfish individuals. Kin selection offers a solution to this social dilemma, but in large social groups mean relatedness is often low. Sociable weavers (Philetairus socius) live in large colonies that share the benefits of a massive communal nest, which requires individual investment for construction and maintenance. Here, we show that despite low mean kinship within colonies, relatives are spatially and socially clustered and that nest‐building males have higher local relatedness to other colony members than do non‐building males. Alternative hypotheses received little support, so we conclude that the benefits of the public good are shared with kin and that cooperative investment is, despite the large size and low relatedness of these communities, kin directed.  相似文献   
837.

Background

Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations.

Results

We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times.

Conclusions

The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.  相似文献   
838.
839.
The present article develops quantitative behavioral and neurophysiological predictions for rabbits trained on an air-puff version of the trace-interval classical conditioning paradigm. Using a minimal hippocampal model, consisting of 8,000 primary cells sparsely and randomly interconnected as a model of hippocampal region CA-3, the simulations identify conditions which produce a clear split in the number of trials individual animals should need to learn a criterion response. A trace interval that is difficult to learn, but still learnable by half the experimental population, produces a bimodal population of learners: an early learner group and a late learner group. The model predicts that late learners are characterized by two kinds of CA-3 neuronal activity fluctuations that are not seen in the early learners. As is typical in our minimal hippocampal models, the off-rate constant of the N-methyl-d-aspartate receptor receptor gives a timescale to the model that leads to a temporally quantifiable behavior, the learnable trace interval.  相似文献   
840.
In this paper, the oscillations and synchronization status of two different network connectivity patterns based on Izhikevich model are studied. One of the connectivity patterns is a randomly connected neuronal network, the other one is a small-world neuronal network. This Izhikevich model is a simple model which can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. Detailed investigations reveal that by varying some key parameters, such as the connection weights of neurons, the external current injection, the noise of intensity and the neuron number, this neuronal network will exhibit various collective behaviors in randomly coupled neuronal network. In addition, we show that by changing the number of nearest neighbor and connection probability in small-world topology can also affect the collective dynamics of neuronal activity. These results may be instructive in understanding the collective dynamics of mammalian cortex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号