首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   8篇
  国内免费   1篇
  70篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   7篇
  2019年   7篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2000年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
61.
A number of proteins accumulate in the anaphase spindle midzone, but the interaction and precise role of these proteins in midzone organization remain obscure. Here, we found that the microtubule-bundling protein PRC1 bound separately to the three motor proteins, KIF4, MKLP1 and CENP-E, but not to the chromosomal passenger proteins. In KIF4-deficient cells, the central spindle was disorganized, and all midzone-associated proteins including PRC1 failed to concentrate at the midline, instead being dispersed along the loosened microtubule bundles of the central spindle. This suggests that KIF4 is essential for the organization of central spindles and for midzone formation. In PRC1-deficient cells, no midzone was formed, KIF4 and CENP-E did not localize to the disconnected half-spindle, and MKLP1 and chromosomal passenger proteins localized to discrete subdomains near microtubule plus ends in the half-spindle. Thus, PRC1 is required for interaction of the two half-spindles and for localization of KIF4 and CENP-E. These results suggest that KIF4 and its binding partner PRC1 play essential roles in the organization of central spindles and midzone formation.  相似文献   
62.
Despite the high level of similarity in structural organisation of their motor domains and, consequently, in the mechanism of motility generation, kinesin-5 moves about 25-fold slower than conventional kinesin (kinesin-1). To elucidate the structural motifs contributing to velocity regulation, we expressed a set of Eg5- and KIF5A-based chimeric proteins with interchanged native neck linker and neck elements. Among them, the chimera consisting of the Eg5 catalytic core (residues 1-357) fused to the KIF5A linker and neck (residues 326-450) displayed increased velocity compared to the Eg5 control protein. This is the first evidence that the velocity of the slow-moving motor Eg5 can be elevated by insertion of neck linker and neck elements taken from a fast-moving motor. Whereas the complementary chimera composed of the KIF5A core (1-325) and the Eg5 linker and neck (358-513) was found to be immotile, insertion of the first half-KIF5A linker into this chimera restored motility. Our results indicate that the neck linker and the neck are involved not only in motility generation in general and in determination of movement direction, but also in velocity regulation.  相似文献   
63.
Melanoma is the most aggressive type of cutaneous tumor and the occurrence of metastasis makes it resistant to almost all available treatment and becomes incorrigible. Hence, identifying metastasis‐related biomarkers and effective therapeutic targets will assist in preventing metastasis and ameliorating cutaneous melanoma. In our present study, we reported kinesin family member 18B (KIF18B) as a novel contributor in cutaneous melanoma proliferation and metastasis, and it was found to be of great significance in predicting the prognosis of cutaneous melanoma patients. Bioinformatics analysis based on ONCOMINE, The Cancer Genome Atlas, and Genotype‐Tissue Expression database revealed that KIF18B was highly expressed in cutaneous melanoma and remarkably correlated with unfavorable clinical outcomes. Consistently, the results of the quantitative real‐time polymerase chain reaction exhibited that the expression of KIF18B was significantly higher in cutaneous melanoma cell lines than that in normal cells. In vitro, biological assays found that knockdown of KIF18B in cutaneous melanoma cells noticeably repressed cell proliferation, migration, and invasion, while inducing cell apoptosis. Moreover, the protein expression of E‐cadherin was enhanced while the expression of N‐cadherin, vimentin, and Snail was decreased in M14 cells after knocking down KIF18B. In addition, the phosphorylation of phosphoinositide 3‐kinase (PI3K) and extracellular‐signal‐regulated kinase (ERK) was significantly suppressed in M14 cells with silenced KIF18B. Above all, our results indicated that the repression of cutaneous melanoma cell migration and proliferation caused by KIF18B depletion suggested an oncogenic role of KIF18B in cutaneous melanoma, which acts through modulating epithelial‐mesenchymal transition and ERK/PI3K pathway.  相似文献   
64.
KIF21A基因的p.Arg954Trp突变引起中国人先天性眼外肌纤维化   总被引:1,自引:0,他引:1  
一型先天性眼外肌纤维化(Congenital fibrosis of the extraocular muscles, CFEOM)是一种罕见的常染色体显性遗传的眼肌疾病,临床上主要表现为动眼神经缺陷而引起的斜视。本研究鉴定了具有四代病人的一个呈常染色体显性遗传的CFEOM1家系,连锁分析表明致病基因与染色体12q处的微卫星标记D12S85紧密连锁,最大LOD值为2.1。对D12S85附近的CFEOM1基因K1F21A进行突变检测,在K1F21A基因第21个外显子发现有一C→T的碱基替换,该变化引起K1F21A基因的第954位密码子由精氨酸突变为色氨酸,SSCP结果表明该家系中的所有患者都具有这一突变,而在家系中的所有正常人以及150个正常汉人对照中则不能检测到这一改变。我们的研究表明,K1F21A的p.Arg954Trp突变是引起这一先天性眼外肌纤维化家系病人患病的致病原因。  相似文献   
65.
Several mammalian kinesin motor proteins exist as multiple isoforms that arise from alternative splicing of a single gene. However, the roles of many motor protein splice variants remain unclear. The kinesin-3 motor protein KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein. The insertions are located in the loop region containing the lysine-rich cluster, also known as the K-loop, and in the hinge region adjacent to the motor domain. To clarify the functions of these alternative splice variants of KIF1B, we examined the biochemical properties of recombinant KIF1B with and without insertion sequences. In a microtubule-dependent ATPase assay, KIF1B variants that contained both insertions had higher activity and affinity for microtubules than KIF1B variants that contained no insertions. Mutational analysis of the K-loop insertion revealed that variants with a longer insertion sequence at this site had higher activity. However, the velocity of movement in motility assays was similar between KIF1B with and without insertion sequences. Our results indicate that splicing isoforms of KIF1B that vary in their insertion sequences have different motor activities.  相似文献   
66.
Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. In this study, we identified a Chinese family with CFEOM1 for four generations. Linkage analysis mapped the causative gene of the family to 12q with a Lod score 2.1 for polymorphic marker D12S85, where KIF21A is located. Direct DNA sequence analysis identified a 2860C→T change in exon 21, resulting in a tryptophan substitution for arginine in codon 954 of KIF21A. SSCP (single-stranded conformational polymorphism) analysis showed that mutation p.Arg954Trp of KIF21A co-segregated with the affected members, but was absent in the unaffected individuals in the family and 150 normal controls. Our results indicate that mutation p.Arg954Trp of the KIF21A is the genetic basis of the Chinese family with CFEOM1.  相似文献   
67.
68.
驱动蛋白与肿瘤的发生有密切联系,但对 KIF26B驱动蛋白在非小细胞肺癌的表达和相关功能作用的研究甚少。为了探索KIF26B在非小细胞肺癌中的表达水平及潜在机制,通过干扰KIF26B后探索对非小细胞肺癌增殖、侵袭、迁移、细胞周期、凋亡以及相关蛋白表达量的影响。对mRNA TCGA 数据库信息分析得出,KIF26B基因在非小细胞肺癌中高表达。qRT-PCR 检测 KIF26B在几株常见非小细胞肺癌细胞系中的表达水平,筛选出 KIF26B在A549 和 NCI-H292细胞系中高表达。利用 RNA干扰技术(RNA interference, RNAi)敲低 A549 和 NCI-H292细胞的 KIF26B基因,通过CCK8、采用实时细胞分析仪、平板克隆及 Transwell 实验检测敲低 KIF26B基因后的生物学功能,免疫印迹法检测蛋白表达水平。结果显示,敲低KIF26B后A549 和 NCI-H292细胞增殖明显降低,侵袭及迁移能力明显减弱。敲低KIF26B后阻碍了A549 和 NCI-H292细胞从G1期向S期的转变,同时凋亡细胞明显增多,与之相关的细胞周期蛋白 D1、Bcl-2、E-cadherin和Vimentin的表达水平显著下调,同时活化的半胱天冬酶-3(active Caspase-3)和其剪切底物 PARP1 的剪切体(cleaved PARP1)表达水平显著上调。结果表明KIF26B可能作为非小细胞肺癌发生的促癌基因,参与了非小细胞肺癌的发生及发展过程。KIF26B有望成为非小细胞肺癌治疗的潜在靶点。  相似文献   
69.
Intracellular trafficking of fibroblast growth factor 2 (FGF2) exhibits two unusual features: (i) it is secreted despite the lack of signal peptide and (ii) it can translocate to the nucleus after interaction with high- and low-affinity receptors on the cell surface, although it does not possess any classical nuclear localization signal. This nuclear translocation constitutes an important part of the response to the growth factor. Previously, we identified Translokin/CEP57, an FGF2 binding partner, as an intracellular mediator of FGF2 trafficking, which is essential for the nuclear translocation of the growth factor. Here, we report the identification of four Translokin partners: sorting nexin 6, Ran-binding protein M and the kinesins KIF3A and KIF3B. These proteins, through their interaction with Translokin, are involved in two exclusive complexes allowing the bidirectional trafficking of FGF2. Thus, Translokin plays a pivotal role in this original mechanism. In addition, we show that FGF2 secretion is regulated by a negative loop, retro-controlled by FGF receptor and involving FGF2 itself.  相似文献   
70.
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the fourth-leading cause of cancer-related deaths worldwide. HCC is refractory to many standard cancer treatments and the prognosis is often poor, highlighting a pressing need to identify biomarkers of aggressiveness and potential targets for future treatments. Kinesin family member 2C (KIF2C) is reported to be highly expressed in several human tumors. Nevertheless, the molecular mechanisms underlying the role of KIF2C in tumor development and progression have not been investigated. In this study, we found that KIF2C expression was significantly upregulated in HCC, and that KIF2C up-regulation was associated with a poor prognosis. Utilizing both gain and loss of function assays, we showed that KIF2C promoted HCC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Mechanistically, we identified TBC1D7 as a binding partner of KIF2C, and this interaction disrupts the formation of the TSC complex, resulting in the enhancement of mammalian target of rapamycin complex1 (mTORC1) signal transduction. Additionally, we found that KIF2C is a direct target of the Wnt/β-catenin pathway, and acts as a key factor in mediating the crosstalk between Wnt/β-catenin and mTORC1 signaling. Thus, the results of our study establish a link between Wnt/β-catenin and mTORC1 signaling, which highlights the potential of KIF2C as a therapeutic target for the treatment of HCC.Electronic supplementary materialThe online version of this article (10.1007/s13238-020-00766-y) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号