首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2002年   1篇
  1999年   1篇
  1989年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
31.
Alcohol-induced liver disease is associated with unacceptable morbidity and mortality. When activated, Kupffer cells (KCs), the resident macrophages in the liver, release proinflammatory cytokine TNF-α, a key mediator of hepatic damage. Although chronic alcohol causes increase in norepinephrine (NE) release leading to hepatic dysfunction, the mechanism of NE-induced hepatic injury in chronic alcohol exposure has not been elucidated. This study was conducted to determine whether chronic alcohol exposure increases NE and upregulates KC α2A-adrenoceptors (α2A-AR) to cause TNF-α release. We also examined the role of mitogen activated protein kinase (MAPK) phosphatase-1 (MKP-1) in this process. Male adult rats were fed the Lieber–DeCarli liquid diet containing alcohol as 36% of total calories. The animals were sacrificed after 6 weeks and blood and liver samples were harvested for further analysis. KCs from healthy male rats were cultured with alcohol for 7 days, and cells then harvested for RNA and protein analyses. Chronic alcohol exposure resulted in hepatic damage. Alcohol caused a 276% increase in circulating NE and 86% increase in TNF-α in the liver. There was a 75% and 62% decrease in MKP-1 mRNA and protein levels, respectively in the liver. In-vitro experiments revealed 121% and 98% increase in TNF-α and α2A-AR mRNA levels with alcohol exposure, respectively, and a 32% decrease in MKP-1 mRNA compared to controls. In summary, chronic alcohol exposure elevates NE and upregulates KC α2A-AR to release TNF-α. Alcohol induced downregulation of MKP-1 leads to further release of TNF-α and hepatic injury.  相似文献   
32.

Background

β-Glucans obtained from fungi, such as baker's yeast (Saccharomyces cerevisiae)-derived β-glucan (BBG), potently activate macrophages through nuclear factor κB (NFκB) translocation and activation of its signaling pathways. The mechanisms by which β-glucans activate these signaling pathways differ from that of lipopolysaccharide (LPS). However, the effects of β-glucans on LPS-induced inflammatory responses are poorly understood. Here, we examined the effects of BBG on LPS-induced inflammatory responses in RAW264.7 mouse macrophages.

Methods

We explored the actions of BBG in RAW264.7 macrophages.

Results

BBG inhibited LPS-stimulated nitric oxide (NO) production in RAW264.7 macrophages by 35–70% at concentrations of 120–200 μg/ml. BBG also suppressed mRNA and protein expression of LPS-induced inducible NO synthase (iNOS) and mitogen-activated protein kinase phosphorylation, but not NFκB activation. By contrast, a neutralizing antibody against dectin-1, a β-glucan receptor, did not affect BBG-mediated inhibition of NO production. Meanwhile, BBG suppressed Pam3CSK-induced NO production. Moreover, BBG suppressed LPS-induced production of pro-and anti-inflammatory cytokines, including interleukin (IL)-1α, IL-1ra, and IL-27.

Conclusions

Our results indicate that BBG is a powerful inhibitor of LPS-induced NO production by downregulating iNOS expression. The mechanism involves inactivation of mitogen-activated protein kinase and TLR2 pathway, but is independent of dectin-1.

General significance

BBG might be useful as a novel agent for the chemoprevention of inflammatory diseases.  相似文献   
33.
Ⅲ型磷脂酰肌醇3-激酶(class Ⅲ PI3K)是以磷脂酰肌醇(PtdIns)为底物催化产生PtdIns3 P的激酶,与多种不同的调节蛋白结合形成Ⅲ型PI3K(PI3KC3)复合物,在自噬及膜泡运输中起重要作用.PI3KC3复合物组成成员PI(3)KC3、p150、Beclin 1、ATG14L、UVRAG、Bif-1和Rubicon在进化上大多具有高度的同源性和保守性,并且与神经系统发育、胸腹腔内脏反位及肿瘤等多种疾病的发生和发展密切相关.  相似文献   
34.
Human T cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T cell leukemia and lymphoma (ATL), infects over 20 million people worldwide. About 1 million of HTLV-1-infected patients develop ATL, a highly aggressive non-Hodgkin's lymphoma without an effective therapy. The pX region of the HTLV-1 viral genome encodes an oncogenic protein, Tax, which plays a central role in transforming CD4+ T lymphocytes by deregulating oncogenic signaling pathways and promoting cell cycle progression. Expression of Tax following viral entry is critical for promoting survival and proliferation of human T cells and is required for initiation of oncogenesis. Tax exhibits diverse functions in host cells, and this oncoprotein primarily targets IκB kinase complex in the cytoplasm, resulting in persistent activation of NF-κB and upregulation of its responsive gene expressions that are crucial for T cell survival and cell cycle progression. We here review recent advances for the pathological roles of Tax in modulating IκB kinase activity. We also discuss our recent observation that Tax connects the IκB kinase complex to autophagy pathways. Understanding Tax-mediated pathogenesis will provide insights into development of new therapeutics in controlling HTLV-1- associated diseases.  相似文献   
35.
Under iron-limiting conditions, Pseudomonas stutzeri KC secretes a small but as yet unidentified factor that transforms carbon tetrachloride (CT) to CO2 and nonvolatile products when activated by reduction at cell membranes. Pseudomonas fluorescens and other cell types activate the factor. Triparental mating was used to generate kanamycin-resistant lux::Tn5 recombinants of strain KC. Recombinants were streaked onto the surface of agar medium plugs in microtiter plates and were then screened for carbon tetrachloride degradation by exposing the plates to gaseous 14C-carbon tetrachloride. CT+ recombinants generated nonvolatile 14C-labeled products, but four CT recombinants did not generate significant nonvolatile 14C-labeled products and had lost the ability to degrade carbon tetrachloride. When colonies of P. fluorescens were grown next to colonies of CT+ recombinants and were exposed to gaseous 14C-carbon tetrachloride, 14C-labeled products accumulated around the P. fluorescens colonies, indicating that the factor secreted by CT+ colonies had diffused through the agar and become activated. When P. fluorescens was grown next to CT colonies, little carbon tetrachloride transformation was observed, indicating a lack of active factor. Expression of lux reporter genes in three of the CT mutants was regulated by added iron and was induced under the same iron-limiting conditions that induce carbon tetrachloride transformation in the wild-type. Received: 23 November 1998 / Accepted: 15 March 1999  相似文献   
36.
37.
Although necrotic cells are known to induce inflammation in vivo, the underlying mechanism remains largely unexplored. In order to examine the mechanism, we used an inflammation model induced by injection of necrotic leukemic P388 cells into the peritoneal cavity in this study. The injection of necrotic cells induced the infiltration of neutrophils and subsequently that of monocytes/macrophages. In agreement with this, the injection also induced the production of KC and MIP-2, and subsequently that of MCP-1. Although the level of KC was higher than that of MIP-2, both anti-KC Ab and anti-MIP-2 Ab significantly inhibited the infiltration of neutrophils. Antibodies against CXCR2, a sole receptor for KC and MIP-2, almost completely inhibited the infiltration of neutrophils and monocytes/macrophages. Anti-MCP-1 Ab, on the other hand, inhibited the infiltration of monocytes/macrophages but not neutrophils. These results indicate that KC and MIP-2 play important roles in the infiltration of neutrophils into the site of injection of necrotic cells and that neutrophils may regulate monocyte/macrophage infiltration in our model.  相似文献   
38.
We previously reported that alginate oligomers, prepared by specific enzymatic digestion of alginate polymer, induced cytokine secretion from mouse macrophage cell line RAW264.7. In the present study, we examined the cytokine levels in the mouse serum after intraperitoneal (ip) administration of a mixture of alginate oligomers. After ip injection of 700 mg/kg of oligomers, the serum level of G-CSF increased promptly and reached the maximum level after 2 h and this high level was sustained until 6 h, and then gradually decreased, whereas injection of 700 mg/kg of alginate polymer had no effect. The effect of alginate oligomer mixture was dose-dependent, and 70 mg/kg was sufficient to attain the maximum serum level of G-CSF. A Bio-Plex bead assay that can detect 23 cytokines at the same time revealed that ip administration of alginate oligomer mixture induced an increase in 20 cytokines in the serum at different levels and with different kinetics depending on the cytokine. Among the cytokines detected the level of G-CSF was the highest. The levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-6, keratinocyte-derived chemokine (KC), IL-12 (p40), and regulated upon activation normal T cell expressed and secreted (RANTES) were also relatively high and exceeded 5000 pg/mL serum at the peak point.  相似文献   
39.
40.
Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号