首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5373篇
  免费   403篇
  国内免费   220篇
  5996篇
  2024年   18篇
  2023年   87篇
  2022年   118篇
  2021年   179篇
  2020年   196篇
  2019年   311篇
  2018年   255篇
  2017年   159篇
  2016年   143篇
  2015年   161篇
  2014年   351篇
  2013年   406篇
  2012年   230篇
  2011年   332篇
  2010年   218篇
  2009年   199篇
  2008年   214篇
  2007年   252篇
  2006年   197篇
  2005年   164篇
  2004年   142篇
  2003年   119篇
  2002年   111篇
  2001年   87篇
  2000年   77篇
  1999年   98篇
  1998年   73篇
  1997年   82篇
  1996年   84篇
  1995年   53篇
  1994年   43篇
  1993年   45篇
  1992年   51篇
  1991年   56篇
  1990年   47篇
  1989年   51篇
  1988年   48篇
  1987年   47篇
  1986年   53篇
  1985年   59篇
  1984年   69篇
  1983年   50篇
  1982年   64篇
  1981年   38篇
  1980年   46篇
  1979年   35篇
  1978年   16篇
  1977年   12篇
  1976年   15篇
  1972年   10篇
排序方式: 共有5996条查询结果,搜索用时 15 毫秒
101.
Long-term potentiation (LTP) is a well-established experimental model used to investigate the synaptic basis of learning and memory. LTP at mossy fibre - CA3 synapses in the hippocampus is unusual because it is normally N-methyl-d-aspartate (NMDA) receptor-independent. Instead it seems that the trigger for mossy fibre LTP involves kainate receptors (KARs). Although it is generally accepted that pre-synaptic KARs play an essential role in frequency facilitation and LTP, their subunit composition remains a matter of significant controversy. We have reported previously that both frequency facilitation and LTP can be blocked by selective antagonism of GluK1 (formerly GluR5/Glu(K5))-containing KARs, but other groups have failed to reproduce this effect. Moreover, data from receptor knockout and mRNA expression studies argue against a major role of GluK1, supporting a more central role for GluK2 (formerly GluR6/Glu(K6)). A potential reason underlying the controversy in the pharmacological experiments may reside in differences in the preparations used. Here we show differences in pharmacological sensitivity of synaptic plasticity at mossy fibre - CA3 synapses depend critically on slice orientation. In transverse slices, LTP of fEPSPs was invariably resistant to GluK1-selective antagonists whereas in parasagittal slices LTP was consistently blocked by GluK1-selective antagonists. In addition, there were pronounced differences in the magnitude of frequency facilitation and the sensitivity to the mGlu2/3 receptor agonist DCG-IV. Using anterograde labelling of granule cells we show that slices of both orientations possess intact mossy fibres and both large and small presynaptic boutons. Transverse slices have denser fibre tracts but a smaller proportion of giant mossy fibre boutons. These results further demonstrate a considerable heterogeneity in the functional properties of the mossy fibre projection.  相似文献   
102.
103.
104.
The reproductive phase in chickpea (Cicer arietinum L.) is affected by salinity, but little is known about the underlying cause. We investigated whether high concentrations of Na+ and Cl in the reproductive structures influence reproductive processes. Chickpea genotypes contrasting in tolerance were subjected to 0, 35 or 50 mm NaCl applied to soil in pots. Flower production and abortion, pod number, percentage of empty pods, seed number and size were evaluated. The concentrations of Na+, K+ and Cl were measured in various plant tissues and, using X‐ray microanalysis, in specific cells of developing reproductive structures. Genotypic variation in reproductive success measured as seed yield in saline conditions was associated with better maintenance of flower production and higher numbers of filled pods (and thus seed number), whereas seed size decreased in all genotypes. Despite the variation in reproductive success, the accumulation of Na+ and Cl in the early reproductive tissues of developing pods did not differ between a tolerant (Genesis836) and a sensitive (Rupali) genotype. Similarly, salinity tolerance was not associated with the accumulation of salt ions in leaves at the time of reproduction or in seeds at maturity.  相似文献   
105.
Wang XF  Shao Y  Tian DZ  Yao T  Lu LM 《生理学报》2003,55(1):71-74
为探索通过体内表达肾上腺髓质素(adrenomedullin,AM)治疗高血压和慢性心衰的可能性,本实验构建了重组AM真核表达载体,并在无内源笥AM表达的K562细胞株上进行了体外表达实验。实验中采用RT-PCR技术扩增AM cDNA片段,并将扩增的cDNA片段插入pcDNA3.1真核表达质粒,构建成含AM cDNA的重组质料pcDNA3.1AM。用脂质体介导将该质粒转染培养的人白血病细腻K562株,在转染的细胞中,用RT-PCR检测证实有AM mRNA存在;用班点免疫分析方法检测转染细胞的培养液上清,证实有AM多肽存在,表明本实验中构建的重组pcDNA3.1AM载体能够在哺乳类细胞中表达AM。  相似文献   
106.
A survey was made of mercury, cadmium and lead in the liver and flesh of 517 eels from eleven rivers in East Anglia. Eels from some sites showed high metal levels, indicating sources of metal contamination. Eel liver is a suitable indicator of inorganic pollution and the flesh is a suitable indicator of organic pollution.  相似文献   
107.
We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.  相似文献   
108.
109.
Alpha-synuclein (α-Syn) is a major component of Lewy bodies, a pathological feature of Parkinson's and other neurodegenerative diseases collectively known as synucleinopathies. Among the possible mechanisms of α-Syn-mediated neurotoxicity is interference with cytoprotective pathways such as insulin signaling. Insulin receptor substrate (IRS)-1 is a docking protein linking IRs to downstream signaling pathways such as phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K)1; the latter exerts negative feedback control on insulin signaling, which is impaired in Alzheimer's disease. Our previous study found that α-Syn overexpression can inhibit protein phosphatase (PP)2A activity, which is involved in the protective mechanism of insulin signaling. In this study, we found an increase in IRS-1 phosphorylation at Ser636 and decrease in tyrosine phosphorylation, which accelerated IRS-1 turnover and reduced insulin-Akt signaling in α-Syn-overexpressing SK-N-SH cells and transgenic mice. The mTOR complex (C)1/S6K1 blocker rapamycin inhibited the phosphorylation of IRS-1 at Ser636 in cells overexpressing α-Syn, suggesting that mTORC1/S6K1 activation by α-Syn causes feedback inhibition of insulin signaling via suppression of IRS-1 function. α-Syn overexpression also inhibited PP2A activity, while the PP2A agonist C2 ceramide suppressed both S6K1 activation and IRS-1 Ser636 phosphorylation upon α-Syn overexpression. Thus, α-Syn overexpression negatively regulated IRS-1 via mTORC1/S6K1 signaling while activation of PP2A reverses this process. These results provide evidence for a link between α-Syn and IRS-1 that may represent a novel mechanism for α-Syn-associated pathogenesis.  相似文献   
110.
Clinical and experimental studies show a modulatory role of estrogens in the brain and suggest their beneficial action in mental and neurodegenerative diseases. The estrogen receptors ER and ERβ are present in the brain and their targeting could bring selectivity and reduced risk of cancer. Implication of ERs in the effect of estradiol on dopamine, opiate and glutamate neurotransmission is reviewed. The ER agonist, PPT, is shown as estradiol to modulate hippocampal NMDA receptors and AMPA receptors in cortex and striatum of ovariectomized rats whereas the ERβ agonist DPN is inactive. Striatal DPN activity suggests implication of ERβ in estradiol modulation of D2 receptors and transporters in ovariectomized rats and is supported by the lack of effect of estradiol in ERβ knockout (ERKOβ) mice. Both ER and ERβ agonists modulate striatal preproenkephalin (PPE) gene expression in ovariectomized rats. In male mice PPT protects against MPTP toxicity to striatal dopamine; this implicates Akt/GSK3β signaling and the apoptotic regulators Bcl2 and Bad. This suggests a role for ER in striatal dopamine neuroprotection. ERKO mice are more susceptible to MPTP toxicity and not protected by estradiol; differences in ERKOβ mice are subtler. These results suggest therapeutic potential for the brain of ER specific agonists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号