首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5335篇
  免费   398篇
  国内免费   217篇
  2024年   12篇
  2023年   85篇
  2022年   115篇
  2021年   179篇
  2020年   196篇
  2019年   310篇
  2018年   253篇
  2017年   159篇
  2016年   140篇
  2015年   161篇
  2014年   349篇
  2013年   405篇
  2012年   229篇
  2011年   332篇
  2010年   217篇
  2009年   197篇
  2008年   213篇
  2007年   251篇
  2006年   196篇
  2005年   163篇
  2004年   141篇
  2003年   118篇
  2002年   111篇
  2001年   86篇
  2000年   75篇
  1999年   98篇
  1998年   70篇
  1997年   82篇
  1996年   84篇
  1995年   52篇
  1994年   43篇
  1993年   42篇
  1992年   51篇
  1991年   56篇
  1990年   46篇
  1989年   51篇
  1988年   48篇
  1987年   46篇
  1986年   51篇
  1985年   59篇
  1984年   69篇
  1983年   49篇
  1982年   63篇
  1981年   38篇
  1980年   46篇
  1979年   35篇
  1978年   16篇
  1977年   12篇
  1976年   15篇
  1972年   10篇
排序方式: 共有5950条查询结果,搜索用时 15 毫秒
71.
Inward-rectifying potassium channels in plant cells provide important mechanisms for low-affinity K+ uptake and membrane potential control in specific cell types, including guard cells, pulvinus cells, aleurone cells and root hair cells. K+ channel blockers are potent tools for studying the physiological functions and structural properties of K+ channels. In the present study the structural and biophysical mechanisms of Cs+ and TEA+ block of a cloned Arabidopsis inward-rectifying K+ channel (KAT1) were analyzed. Effects of the channel blockers Cs+ and TEA+ were characterized both extracellularly and intracellularly. Both external Cs+ and TEA+ block KAT1 currents. A mutant of KAT1 (``m2KAT1'; H267T, E269V) was produced by site-directed mutagenesis of two amino acid residues in the C-terminal portion of the putative pore (P) domain. This mutant channel was blocked less by external Cs+ and TEA+ than the wild-type K+ channel. Internal TEA+ and Cs+ did not significantly block either m2KAT1 or KAT1 channels. Other properties, such as cation selectivity, voltage-dependence and proton activation did not show large changes between m2KAT1 and KAT1, demonstrating the specificity of the introduced mutations. These data suggest that the amino acid positions mutated in the inward-rectifying K+ channel, KAT1, are accessible to external blockers and may be located on the external side of the membrane, as has been suggested for outward-rectifying K+ channels. Received: 31 July 1995/Revised: 5 January 1996  相似文献   
72.
The mechanosensitive properties of large-conductance Ca2+-activated K+ (BK) channels from embryonic rat neuroepithelium were investigated with the cell-attached and inside-out configurations of the patch-clamp technique. The channels were activated in both recording configurations by negative pressures applied to the patch electrode, but reversal of the effect was total and immediate in inside-out patches whereas it was incomplete and delayed in on-cell patches. This mechanosensitivity was not mediated by Ca2+ ions or fatty acids, suggesting that it is an intrinsic property of these channels. Cytochalasin B did not affect mechanosensitivity in on-cell patches but increased it in inside-out patches. Kinetic studies showed that stretch increased the mean open time of the channels and decreased the slowest time constant of their closed-time distributions. The present as well as previous results suggest complex interactions between embryonic BK channels and their membranous and submembranous environment. Received: 1 February 1996/Revised: 25 March 1996  相似文献   
73.
Reconstituted Na+,K+-ATPase from either pig kidney or shark rectal glands was phosphorylated by cAMP dependent protein kinase, PKA. The stoichiometry was 0.9 mole Pi/mole -subunit in the pig kidney enzyme and 0.2 mol Pi/mol -subunit in the shark enzyme. In shark Na+,K+-ATPase PKA phosphorylation increased the maximum hydrolytic activity for cytoplasmic Na+ activation and extracellular K+ activation without affecting the apparent Km values. In contrast, no significant functional effect after PKA phosphorylation was observed in pig kidney Na+,K+-ATPase.  相似文献   
74.
Abstract: K252a, an inhibitor of trk phosphorylation and nerve growth factor signal transduction in PC12 cells, blocked nerve growth factor-induced responses in cultured adult rat dorsal root ganglion sensory neurones. The nerve growth factor-dependent appearance of capsaicin sensitivity and accumulation of the neuropeptide substance P were inhibited when dorsal root ganglion neurones were grown in the presence of low concentrations (100 n M ) of K252a. At higher concentrations (3 µ M ), however, K252a stimulated the development of capsaicin sensitivity and the accumulation of substance P even in the absence of nerve growth factor. By using a wide dose range, therefore, we showed that K252a could either inhibit or mimic nerve growth factor's actions on sensory neurones. These results may explain the apparent paradox in the literature that some groups show a blocking effect of K252a on nerve growth factor-dependent survival of dorsal root ganglion sensory neurones, whereas others report that K252a can substitute for nerve growth factor or other trophic factors and promote neuronal survival.  相似文献   
75.
Abstract: The effect of hypoxia on Na+,K+-ATPase and Na+-K+-Cl? cotransport activity in cultured rat brain capillary endothelial cells (RBECs) was investigated by measuring 86Rb+ uptake as a tracer for K+. RBECs expressed both Na+,K+-ATPase and Na+-K+-Cl? cotransport activity (4.6 and 5.5 nmol/mg of protein/min, respectively). Hypoxia (24 h) decreased cellular ATP content by 43.5% and reduced Na+,K+-ATPase activity by 38.9%, whereas it significantly increased Na+-K+-Cl? cotransport activity by 49.1% in RBECs. To clarify further the mechanism responsible for these observations, the effect of oligomycin-induced ATP depletion on these ion transport systems was examined. Exposure of RBECs to oligomycin led to a time-dependent decrease of cellular ATP content (by ~65%) along with a complete inhibition of Na+,K+-ATPase and a coordinated increase of Na+-K+-Cl? cotransport activity (up to 100% above control values). Oligomycin augmentation of Na+-K+-Cl? cotransport activity was not observed in the presence of 2-deoxy-d -glucose (a competitive inhibitor of glucose transport and glycolysis) or in the absence of glucose. These results strongly suggest that under hypoxic conditions when Na+,K+-ATPase activity is reduced, RBECs have the ability to increase K+ uptake through Na+-K+-Cl? cotransport.  相似文献   
76.
Structural and serological studies were performed with the lipopolysaccharide (LPS) expressed by Escherichia coli K12 strains No. 30 and No. 64, into which cosmid clones derived from Vibrio cholerae O1 NIH 41 (Ogawa) and NIH 35A3 (Inaba) had been introduced, respectively. The two recombinant strains, No. 30 (Ogawa) and No. 64 (Inaba), produced LPS that included, in common, the O-polysaccharide chain composed of an α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine (4-amino-4,6-dideoxy-D -manno-pyranose) homopolymer attached to the core oligosaccharide of the LPS of E. coli K12. Structural analysis revealed the presence of N-(3-deoxy-L -glycero-tetronyl)-2-O-methyl-D -perosamine at the non-reducing terminus of the O-polysaccharide chain of LPS from No. 30 (Ogawa) but not from No. 64 (Inaba). Serological analysis revealed that No. 30 (Ogawa) and No. 64 (Inaba) LPS were found to share the group antigen factor A of V. cholerae O1. They were distinguished by presence of the Ogawa antigen factor B [co-existing with relatively small amounts of the Inaba antigen factor (c)] in the former LPS and the Inaba antigen factor C in the latter LPS. It appears, therefore, that No. 30 (Ogawa) and No. 64 (Inaba) have O-antigenic structures that are fully consistent with the AB(c) structure for the Ogawa and the AC structure for the Inaba O-forms of V. cholerae O1, respectively. Thus, the present study clearly confirmed our previous finding that the Ogawa antigenic factor B is substantially related to the 2-O-methyl group at the non-reducing terminus of the α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine homopolymer that forms the O-polysaccharide chain of LPS of V. cholerae O1 (Ogawa).  相似文献   
77.
78.
High-conductance calcium-activated potassium (maxi-K) channels comprise a specialized family of K+ channels. They are unique in their dual requirement for depolarization and Ca2+ binding for transition to the open, or conducting, state. Ion conduction through maxi-K channels is blocked by a family of venom-derived peptides, such as charybdotoxin and iberiotoxin. These peptides have been used to study function and structure of maxi-K channels, to identify novel channel modulators, and to follow the purification of functional maxi-K channels from smooth muscle. The channel consists of two dissimilar subunits, and . The subunit is a member of theslo Ca2+-activated K+ channel gene family and forms the ion conduction pore. The subunit is a structurally unique, membrane-spanning protein that contributes to channel gating and pharmacology. Potent, selective maxi-K channel effectors (both agonists and blockers) of low molecular weight have been identified from natural product sources. These agents, together with peptidyl inhibitors and site-directed antibodies raised against and subunit sequences, can be used to anatomically map maxi-K channel expression, and to study the physiologic role of maxi-K channels in various tissues. One goal of such investigations is to determine whether maxi-K channels represent novel therapeutic targets.  相似文献   
79.
Abstract: Injection of large doses of ammonia into rats leads to depletion of brain ATP. However, the molecular mechanism leading to ATP depletion is not clear. The aim of the present work was to assess whether ammonium-induced depletion of ATP is mediated by activation of the NMDA receptor. It is shown that injection of MK-801, an antagonist of the NMDA receptor, prevented ammonia-induced ATP depletion but did not prevent changes in glutamine, glutamate, glycogen, glucose, and ketone bodies. Ammonia injection increased Na+,K+-ATPase activity by 76%. This increase was also prevented by previous injection of MK-801. The molecular mechanism leading to activation of the ATPase was further studied. Na+,K+-ATPase activity in samples from ammonia-injected rats was normalized by "in vitro" incubation with phorbol 12-myristate 13-acetate, an activator of protein kinase C. The results obtained suggest that ammonia-induced ATP depletion is mediated by activation of the NMDA receptor, which results in decreased protein kinase C-mediated phosphorylation of Na+,K+-ATPase and, therefore, increased activity of the ATPase and increased consumption of ATP.  相似文献   
80.
In a controlled animal experiment the effects of dietary subacute Zn deficiency on growth, Zn concentration, and tissue 42-K distribution were studied. Growth retardation caused lower body weight because both skeletal and heart muscle showed a reduction in cell mass. Zn concentrations were reduced in most tissues, however, they remained unaltered in heart muscle. 42-K activity increased in skeletal muscle and pancreas. We hypothesize the latter reflects the organs rate of metabolism, inducing the exocrine pancreas to increase Zn absorption; in skeletal muscle it may induce also alterations in cell potentiation, causing restless behavior. As suggested by the calculated specific K activity (Bq/mol), the K uptake was highest in liver and bone, high in pancreas and skeletal muscle and low in heart muscle. The latter suggests K retention in heart muscle. Specific activity in plasma and jejunum remained unaltered: K status and absorption seem unaffected. Zn deficiency causes different 42-K activities in the various tissues, that respond by alterations in K metabolism without the induction of K deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号