首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   1篇
  2022年   1篇
  2019年   2篇
  2017年   3篇
  2015年   2篇
  2014年   11篇
  2013年   16篇
  2012年   8篇
  2011年   16篇
  2010年   1篇
  2009年   7篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  1997年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
11.
It is well accepted that the Mdm2 ubiquitin ligase acts as a major factor in controlling p53 stability and activity in vivo. Although several E3 ligases have been reported to be involved in Mdm2-independent p53 degradation, the roles of these ligases in p53 regulation in vivo remain largely unknown. To elucidate the physiological role of the ubiquitin ligase ARF-BP1, we generated arf-bp1 mutant mice. We found that inactivation of arf-bp1 during embryonic development in mice resulted in p53 activation and embryonic lethality, but the mice with arf-bp1 deletion specifically in the pancreatic β-cells (arf-bp1(FL/Y)/RIP-cre) were viable and displayed no obvious abnormality after birth. Interestingly, these mice showed dramatic loss of β-cells as mice aged, and >50% of these mice died of severe diabetic symptoms before reaching 1 year of age. Notably, the diabetic phenotype of these mice was largely reversed by concomitant deletion of p53, and the life span of the mice was significantly extended (p53(LFL/FL)/arf-bp1(FL/Y)/RIP-cre). These findings underscore an important role of ARF-BP1 in maintaining β-cell homeostasis in aging mice and reveal that the stability of p53 is critically regulated by ARF-BP1 in vivo.  相似文献   
12.
Activated protein C (aPC) is a natural anticoagulant with strong cyto-protective and anti-inflammatory properties. aPC inhibits pancreatic inflammation and preserves functional islets after intraportal transplantation in mice. Whether aPC prevents the onset or development of type 1 diabetes (T1D) is unknown. In this study, when human recombinant aPC was delivered intraperitoneally, twice weekly for 10 weeks (from week 6 to 15) to non-obese diabetic (NOD) mice, a model for T1D, the incidence of diabetes was reduced from 70% (saline control) to 7.6% by 26 weeks of age. Islets of aPC-treated mice exhibited markedly increased expression of insulin, aPC/protein C, endothelial protein C receptor, and matrix metalloproteinase (MMP)-2 when examined by immunostaining. The insulitis score in aPC-treated mice was 50% less than that in control mice. T regulatory cells (Tregs) in the spleen, pancreatic islets, and pancreatic lymph nodes were increased 37, 53, and 59%, respectively, in NOD mice following aPC treatment. These Tregs had potent suppressor function and, after adoptive transfer, delayed diabetes onset in NOD.severe combined immunodeficiency mice. The culture of NOD mouse spleen cells with aPC reduced the secretion of inflammatory cytokines interleukin (IL)-1β and interferon-γ but increased IL-2 and transforming growth factor-β1, two cytokines required for Treg differentiation. In summary, our results indicate that aPC prevents T1D in the NOD mouse. The aPC mechanism of action is complex, involving induction of Treg differentiation, inhibition of inflammation, and possibly direct cyto-protective effects on β cells.  相似文献   
13.
Zusammenfassung Kristalline B-Granula im Pankreas der Ringelnatter besitzen die Form von Rhombendodekaedern (a 11 nm, kubisch-raumzentriertes Gitter). Diese Diagnose wird abgeleitet von den Ergebnissen der dreidimensionalen Rekonstruktion von Serienschnitten, der optischen Diffraktometrie und aus dem Vergleich mit Kristallmodellen. Die Bedeutung kristalliner B-Granula wird erörtert.
Crystallographic interpretation of the ultrastructure of B-granules in the islets of langerhans of the grass-snake, Natrix n. natrix (L.)
Summary Crystalline B-granules of grass-snake islets of Langerhans have been shown to possess the shape of rhombic dodecahedra (a 11 nm, cubic body-centered lattice). Three-dimensional reconstructions from serial sections, optical diffractometry and comparison with crystal models were the techniques utilized. The significance of crystalline B-granules is discussed.
Durchgeführt mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft (La 229/3).Fräulein D. Vaihinger, Gießen, danken wir für die Anfertigung von Kristallmodellen, den Herren Prof. Dr. R. Mosebach, Gießen, und Dr. J. T. Finch, Cambridge, für Diskussionen und Anregungen.  相似文献   
14.
The activation of c-jun N-terminal kinase (JNK) in pancreatic islets is associated with impaired function and viability, and JNK inhibitory peptides (JNKIs) are cytoprotective. In particular, l-isoforms of JNKIs were shown to improve islets viability, while the d-retroinverso isoform of JNKI (RI-JNKI), with a higher therapeutic potential due to longer half-life, has not been studied. We compared the cytoprotective properties of L-JNKI and RI-JNKI. Treatment of murine islets with L-JNKI resulted in preservation of islet equivalents and greater percentage of viable beta-cells in culture. In contrast, RI-JNKI was not protective. We found that L-JNKI but not RI-JNKI prevents endogenous c-jun phosphorylation in insulinoma cells. Moreover, RI-JNKI induced islet cells necrosis and activates the p-38 kinase. In conclusion, L-JNKI directly affects beta-cells and ameliorates islet viability and function, while RI-JNKI has toxic effects, limiting its biological application to islet cell biology.  相似文献   
15.
16.
The small neuroendocrine protein 7B2 is required for the production of active prohormone convertase 2 (PC2), an enzyme involved in the synthesis of peptide hormones, such as glucagon and proopiomelanocortin-derived α-melanocyte-stimulating hormone. However, whether 7B2 can dynamically modulate peptide production through regulation of PC2 activity remains unclear. Infection of the pancreatic alpha cell line α-TC6 with 7B2-encoding adenovirus efficiently increased production of glucagon, whereas siRNA-mediated knockdown of 7B2 significantly decreased stored glucagon. Furthermore, rescue of 7B2 expression in primary pituitary cultures prepared from 7B2 null mice restored melanocyte-stimulating hormone production, substantiating the role of 7B2 as a regulatory factor in peptide biosynthesis. In anterior pituitary and pancreatic beta cell lines, however, overexpression of 7B2 affected neither production nor secretion of peptides despite increased release of active PC2. In direct contrast, 7B2 overexpression decreased the secretion and increased the activity of PC2 within α-TC6 cells; the increased intracellular concentration of active PC2 within these cells may therefore account for the enhanced production of glucagon. In line with these findings, we found elevated circulating glucagon levels in 7B2-overexpressing cast/cast mice in vivo. Surprisingly, when proopiomelanocortin and proglucagon were co-expressed in either pituitary or pancreatic alpha cell lines, proglucagon processing was preferentially decreased when 7B2 was knocked down. Taken together, these results suggest that proglucagon cleavage has a greater dependence on PC2 activity than other precursors and moreover that 7B2-dependent routing of PC2 to secretory granules is cell line-specific. The manipulation of 7B2 could therefore represent an effective way to selectively regulate synthesis of certain PC2-dependent peptides.  相似文献   
17.
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80-90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60-75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20-30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. β-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.  相似文献   
18.
PAS kinase (PASK) is a glucose-regulated protein kinase involved in the control of pancreatic islet hormone release and insulin sensitivity. We aimed here to identify mutations in the PASK gene that may be associated with young-onset diabetes in humans. We screened 18 diabetic probands with unelucidated maturity-onset diabetes of the young (MODY). We identified two rare nonsynonymous mutations in the PASK gene (p.L1051V and p.G1117E), each of which was found in a single MODY family. Wild type or mutant PASKs were expressed in HEK 293 cells. Kinase activity of the affinity-purified proteins was assayed as autophosphorylation at amino acid Thr307 or against an Ugp1p-derived peptide. Whereas the PASK p.G1117E mutant displayed a ~25% increase with respect to wild type PASK in the extent of autophosphorylation, and a ~2-fold increase in kinase activity toward exogenous substrates, the activity of the p.L1051V mutant was unchanged. Amino acid Gly1117 is located in an α helical region opposing the active site of PASK and may elicit either: (a) a conformational change that increases catalytic efficiency or (b) a diminished inhibitory interaction with the PAS domain. Mouse islets were therefore infected with adenoviruses expressing wild type or mutant PASK and the regulation of insulin secretion was examined. PASK p.G1117E-infected islets displayed a 4-fold decrease in glucose-stimulated (16.7 versus 3 mM) insulin secretion, chiefly reflecting a 4.5-fold increase in insulin release at low glucose. In summary, we have characterized a rare mutation (p.G1117E) in the PASK gene from a young-onset diabetes family, which modulates glucose-stimulated insulin secretion.  相似文献   
19.
Summary Due to a decided lack in the literature of reports on the microangioarchitecture of the pancreas of snakes, an analysis was performed in three different species of two different ophidian families with the use of cast preparations and complementary scanning electron microscopy. The vascular architecture reflects the lobular substructure of the pancreas; the organ is supplied by branches of the superior mesentric artery. Coiled lobular arteries and arterioles continue into a meshwork of capillaries. Dilated capillaries of the endocrine portion of the pancreas are an integral component of this fine capillary network. A few very small capillaries establish a connection between the endocrine and the exocrine pancreas. The other capillaries drain into venules, which ultimately join their respective veins. No interspecific differences were noted in the vascularization of the pancreas of the three ophidian species examined. The present results suggest the existence of arterio-venous anastomoses and speak against the presence of a portal system, but establish a feed-forward capillary connection from the endocrine to the exocrine component of the ophidian pancreas.  相似文献   
20.
Summary S-100 protein-immunoreactive cells were demonstrated by immunocytochemical procedures in the pancreatic islets of Langerhans in the monkey Macaca irus. By use of antibodies against human S-100 protein or bovine S-100 protein, these cells were observed in all islets in the head and tail portions of the pancreas. Immunostained cells were usually located in the center of the islets or sometimes found in a more widely distributed form, but they were never arranged in a regular concentric fashion. The number of immunoreactive cells varied from one islet to another but it was relatively limited making up only 0.75%–6.3% of all insular cells. With the use of the double-immunoenzymatic procedure for demonstration of the four main endocrine cell types (insulin-, glucagon-, somatostatin-and pancreatic polypeptide producing elements), it was possible to establish that S-100 protein-immunoreactive cells represent a distinct cell type. Antibodies against S-100 protein-stained neuroinsular complexes. The present findings speak in favor of a new cell type to be added to the large variety of S-100 protein-immunoreactive cells outside the central nervous system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号