首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   74篇
  国内免费   2篇
  2023年   7篇
  2022年   10篇
  2021年   19篇
  2020年   22篇
  2019年   29篇
  2018年   21篇
  2017年   14篇
  2016年   16篇
  2015年   24篇
  2014年   34篇
  2013年   45篇
  2012年   23篇
  2011年   31篇
  2010年   20篇
  2009年   26篇
  2008年   21篇
  2007年   30篇
  2006年   41篇
  2005年   19篇
  2004年   20篇
  2003年   24篇
  2002年   12篇
  2001年   13篇
  2000年   11篇
  1999年   6篇
  1998年   14篇
  1997年   10篇
  1996年   8篇
  1995年   4篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有586条查询结果,搜索用时 15 毫秒
111.
Many life history stages of animals that experience environmental insults enter developmental arrested states that are characterized by reduced cellular proliferation, with or without a concurrent reduction in overall metabolism. In the case of the most profound metabolic arrest reported in invertebrates, i.e., anaerobic quiescence in Artemia franciscana embryos, acidification of the intracellular milieu is a major factor governing catabolic and anabolic downregulation. Release of ions from intracellular compartments is the source for approximately 50% of the proton equivalents needed for the 1.5 unit acidification that is observed. Recovery from the metabolic arrest requires re-sequestration of the protons with a vacuolar-type ATPase (V-ATPase). The remarkable facet of this mechanism is the ability of embryonic cells to survive the dissipation of intracellular ion gradients. Across many diapause-like states, the metabolic reduction and subsequent matching of energy demand is accomplished by shifting energy metabolism from oxidative phosphorylation to aerobic glycolysis. Molecular pathways that are activated to induce these resilient hypometabolic states include stimulation of the AMP-activated protein kinase (AMPK) and insulin signaling via suite of daf (dauer formation) genes for diapause-like states in nematodes and insects. Contributing factors for other metabolically depressed states involve hypoxia-inducible factor-1 and downregulation of the pyruvate dehydrogenase complex. Metabolic similarities between natural states of stasis and some cancer phenotypes are noteworthy. Reduction of flux through oxidative phosphorylation helps prevent cell death in certain cancer types, similar to the way it increases viability of dauer stages in Caenorhabditis elegans. Mechanisms that underlie natural stasis are being used to pre-condition mammalian cells prior to cell biostabilization and storage.  相似文献   
112.
目的:探讨三七皂苷R1对大鼠缺血心肌VEGF、bFGF的影响。方法:选择雄性Wistar大鼠39只,建立心肌梗死(AMI)模型,术后24h存活大鼠随机分为药物组(n=13)、对照组(n=13),另设假手术组(n=8)。药物组给予三七皂苷R1水溶液(2.5 mg·kg-1·d-1)腹腔注射、对照组及假手术组给予等体积生理盐水腹腔注射,用药4周。于实验终点处死大鼠,心肌组织取材,Ⅷ因子染色计数微血管数(MVC)及微血管密度(MVD),免疫组织化学法观察缺血心肌VEGF、bFGF蛋白的表达。结果:药物组及对照组MVC、MVD均高于假手术组,且药物组高于对照组(P0.05);大鼠缺血心肌药物组及对照组VEGF、bFGF蛋白表达均高于假手术组(P0.05),且药物组高于对照组(P0.05)。结论:三七皂苷R1促进大鼠缺血心肌血管再生同时可上调缺血心肌VEGF、bFGF蛋白水平。  相似文献   
113.
目的:本文旨在观察间歇性低压低氧(IH)预处理诱导脑缺血耐受过程中,大鼠海马CA1区磷酸化p38MAPK(p-p38 MAPK)的表达以及表达p-p38 MAPK的星形胶质细胞数量。方法:将30只健康雄性Wistar大鼠随机分为6组(n=5):假手术(sham)0 min组、IH+sham 0 min组、sham 7 d组、IH+sham 7 d组、损伤性缺血(Is)7 d组、IH+Is 7 d组。通过硫堇染色对各组大鼠海马CA1区锥体神经元进行神经病理学评价;免疫组织化学染色观察pp38 MAPK的表达;免疫荧光双标法观察表达p-p38 MAPK的星形胶质细胞数量。结果:IH预处理可以诱导脑缺血耐受,同时引起大鼠海马CA1区p-p38 MAPK的表达明显增加,且上调星形胶质细胞中p-p38 MAPK的表达。结论:低压低氧预处理促大鼠海马CA1区锥体神经元和星形胶质细胞中p-p38MAPK上调可能是IH预处理保护脑的一个途经。  相似文献   
114.

Background

The functions of free radicals on the effects of insulin that result in protection against cerebral ischemic insult in diabetes remain undefined. This present study aims to explain the contradiction among nitric oxide (NO)/superoxide/peroxynitrite of insulin in amelioration of focal cerebral ischemia–reperfusion (FC I/R) injury in streptozotocin (STZ)-diabetic rats and to delineate the underlying mechanisms. Long-Evans male rats were divided into three groups (age-matched controls, diabetic, and diabetic treated with insulin) with or without being subjected to FC I/R injury.

Results

Hyperglycemia exacerbated microvascular functions, increased cerebral NO production, and aggravated FC I/R-induced cerebral infarction and neurological deficits. Parallel with hypoglycemic effects, insulin improved microvascular functions and attenuated FC I/R injury in STZ-diabetic rats. Diabetes decreased the efficacy of NO and superoxide production, but NO and superoxide easily formed peroxynitrite in diabetic rats after FC I/R injury. Insulin treatment significantly rescued the phenomenon.

Conclusions

These results suggest that insulin renders diabetic rats resistant to acute ischemic stroke by arresting NO reaction with superoxide to form peroxynitrite.  相似文献   
115.
This study was to investigate the mechanisms of ischemic mitral regurgitation (IMR) by using a finite element (FE) approach. IMR is a common complication of coronary artery disease; and it usually occurs due to myocardial infarction. The pathophysiological mechanisms of IMR have not been fully understood, much debate remains about the exact contribution of each mechanism to IMR. Two patient-specific FE models of normal mitral valves (MV) were reconstructed from multi-slice computed tomography scans. Different grades of IMR during its pathogenesis were created by perturbation of the normal MV geometry. Effects of annular dilatation and papillary muscle (PM) displacement (both isolated and combined) on the severity of IMR were examined. We observed greater increase in IMR (in terms of regurgitant area and coaptation length) in response to isolated annular dilatation than that caused by isolated PM displacement, while a larger PM displacement resulted in higher PM forces. Annular dilation, combined with PM displacement, was able to significantly increase the severity of IMR and PM forces. Our simulations demonstrated that isolated annular dilatation might be a more important determinant of IMR than isolated PM displacement, which could help explain the clinical observation that annular size reduction by restrictive annuloplasty is generally effective in treating IMR.  相似文献   
116.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.  相似文献   
117.
保鲜剂及冷藏对鹤望兰切花瓶插品质的影响   总被引:2,自引:0,他引:2  
本文探讨不同保鲜剂、预处理液及冷藏时间对鹤望兰切花瓶插寿命和观赏品质的影响。结果表明,供试的8组瓶插保鲜液中,以配方5% S+300 mg/L 8-HQC+100 mg/L CA+150 mg/L STS+100 mg/L CoCl2+25 mg/L EDTA-Na保鲜效果最佳,切花瓶插寿命(23.5 d)比CK延长15.2 d,小花开放率(56.1%)比CK提高1.19倍。供试的5组冷藏预处理液中,以10% S+300 mg/L 8-HQC+75 mg/L KH2PO4·3H2O效果最佳,切花经过2~3周8~10℃冷藏后,瓶插寿命(13.7 d)比CK延长7.9 d,小花开放率(43.6%)比CK提高98.2%;该处理组鹤望兰切花的适宜冷藏时间可延长为3周。  相似文献   
118.
Clinically, bone marrow mesenchymal stem cells (BMSCs) have been used in treatment of many diseases, but the local oxidative stress (OS) of lesion severely limits the survival of BMSCs, which reduces the efficacy of BMSCs transplantation. Therefore, enhancing the anti-OS stress ability of BMSCs is a key breakthrough point. Preconditioning is a common protective mechanism for cells or body. Here, the aim of this study was to investigate the effects of OS preconditioning on the anti-OS ability of BMSCs and its mechanism. Fortunately, OS preconditioning can increase the expression of superoxide dismutase, catalase, NQO1, and heme oxygenase 1 through the nuclear factor erythroid 2-related factor 2 pathway, thereby decreased the intracellular reactive oxygen species (ROS) levels, relieved the damage of ROS to mitochondria, DNA and cell membrane, enhanced the anti-OS ability of BMSCs, and promoted the survival of BMSCs under OS.  相似文献   
119.
Protein kinase C has been shown to play a central role in the cardioprotection of ischemic preconditioning. However, the mechanism underlying PKC-mediated cardioprotection is not completely understood. Given that caveolae are critical for PKC signaling, we sought to determine whether hypoxic preconditioning promotes translocation and association of PKC isoforms with caveolin-3. A cellular model of hypoxic preconditioning from adult rat cardiac myocytes (ARCM) or H9c2 cells was employed to examine PKC isoforms by molecular, biochemical and cellular imaging analysis. Hypoxia was induced by incubating the cells in an airtight chamber in which O2 was replaced by N2 with glucose-free Tyrode''s solution. Cells were subjected to hypoxic preconditioning with 10 minutes of hypoxia followed by 30 minutes of reoxygenation. Western blot data indicated that the band intensity for PKCϵ, PKCδ or PKCα, but not PKCβ and PKCζ was enhanced significantly by hypoxic preconditioning from the caveolin-enriched plasma membrane interactions. Immunoprecipitation experiments from the caveolin-enriched membrane fractions of ARCM showed that the level of PKCϵ, PKCδ and PKCα in the anti-caveolin-3 immunoprecipitates was also increased by hypoxic preconditioning. Further, our FRET analysis in H9c2 cells suggested that there is a minimum FRET signal for caveolin-3 and PKCϵ along cell peripherals, but hypoxic preconditioning enhanced the FRET signal, indicating a potential interaction between caveolin-3 and PKCϵ. And also treatment of the cells with hypoxic preconditioning led to a smaller amount of translocation of PKCϵ to the mitochondria than that to the membrane. We demonstrate that hypoxic preconditioning promotes rapid association of PKCϵ, PKCδ and PKCα with the caveolin-enriched plasma membrane microdomain of cardiac myocytes, and PKCϵ via direct molecular interaction with caveolin-3. This regulatory mechanism may play an important role in cardioprotection.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号