首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   94篇
  国内免费   14篇
  753篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   6篇
  2019年   15篇
  2018年   13篇
  2017年   17篇
  2016年   17篇
  2015年   11篇
  2014年   25篇
  2013年   46篇
  2012年   10篇
  2011年   14篇
  2010年   23篇
  2009年   22篇
  2008年   44篇
  2007年   27篇
  2006年   41篇
  2005年   33篇
  2004年   37篇
  2003年   26篇
  2002年   22篇
  2001年   19篇
  2000年   13篇
  1999年   22篇
  1998年   21篇
  1997年   13篇
  1996年   18篇
  1995年   14篇
  1994年   21篇
  1993年   17篇
  1992年   16篇
  1991年   15篇
  1990年   4篇
  1989年   8篇
  1988年   5篇
  1987年   8篇
  1986年   7篇
  1985年   11篇
  1984年   14篇
  1983年   11篇
  1982年   14篇
  1981年   2篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有753条查询结果,搜索用时 0 毫秒
51.
Protein adsorption onto solid substrates usually takes place in an irreversible fashion and this irreversible adsorption also occurs in some enzymatic reactions. In this work the adsorption behavior of intact β-1, 4-glucan-cellobiohydrolase (CBH I) from Trichoderma reesei onto microcrystalline cellulose was monitored by surface plasmon resonance and UV-spectral method. It was found that there existed reversible binding and irreversible binding of CBH I during its interaction with cellulose substrate. To evaluate the influence of adsorption on cellulose enzymatic hydrolysis, the reaction dynamics on pure cellulose were determined. A plot of the hydrolysis rate against the surface density of irreversibly adsorbed CBH I, revealed an inverse relationship in which an apparent decrease in the hydrolysis rate was observed with increasing surface density. Taken together, results presented here should be useful for modifying the binding characteristics of CBH I and making them more effective in cellulose hydrolysis.  相似文献   
52.
Repeat proteins comprise tandem arrays of a small structural motif. Their structure is defined and stabilized by interactions between residues that are close in the primary sequence. Several studies have investigated whether their structural modularity translates into modular thermodynamic properties. Tetratricopeptide repeat proteins (TPRs) are a class in which the repeated unit is a 34 amino acid helix-turn-helix motif. In this work, we use differential scanning calorimetry (DSC) to study the equilibrium stability of a series of TPR proteins with different numbers of an identical consensus repeat, from 2 to 20, CTPRa2 to CTPRa20. The DSC data provides direct evidence that the folding/unfolding transition of CTPR proteins does not fit a two-state folding model. Our results confirm and expand earlier studies on TPR proteins, which showed that apparent two-state unfolding curves are better fit by linear statistical mechanics models: 1D Ising models in which each repeat is treated as an independent folding unit.  相似文献   
53.
The investigation of the effect of acid pH on the structure of beta-globulin indicated several transitions as a function of pH. Upon reducing the pH from 7.0, the beta-globulin molecule underwent an expansion due to hydration up to pH 5.0, and a further increase in H+ concentration resulted in unfolding. This is a single step cooperative denaturation as indicated by the viscosity profile. At extreme acid pH values (below pH 2.0) the protein associates or folds to a different conformational motif as shown by blue shift of ultraviolet fluorescence emission maximum and decrease in reduced viscosity values by more than 30% due to an entropically driven hydrophobic interaction. The conformational analysis of beta-globulin showed a decrease up to pH 3.0, followed by an increase in the ordered structure at low pH values indicating that the low pH values stabilized this new conformation. These results are discussed in view of the molten globule structure of proteins.  相似文献   
54.
Size exclusion chromatography (SEC) coupled with online light scattering, viscometry, refractometry, and UV-visible spectroscopy provides a very powerful tool for studying protein size, shape, and aggregation. This technique can be used to determine the molecular weight of the component peaks independent of the retention times in the SEC column and simultaneously measure the hydrodynamic radius and polydispersity of the protein. We applied this technology by coupling an Agilent Chemstation high-performance liquid chromatography system with a diode array UV-visible detector and a Viscotek 300 EZ Pro triple detector (combination of a light scattering detector, refractometer, and differential pressure viscometer) to characterize and compare the molecular properties of a number of monoclonal antibodies. Our studies reveal that different monoclonal immunoglobulin Gs (IgGs) and chimeric IgGs show slightly different retention times and therefore different molecular weights in gel filtration analysis. However, when they are analyzed by light scattering, refractometry, and viscometry, different IgGs have comparable molecular weight, molecular homogeneity (polydispersity), and size. Gel filtration coupled with UV or refractive index detection suggests that antibodies purified and formulated for preclinical and clinical development are more than 95% monomer with little or no detectable soluble aggregates. Light scattering measurements showed the presence of trace amounts of soluble aggregate in all the IgG preparations. The different IgG molecules showed different susceptibility to heat and pH. One of the murine antibodies was considerably less stable than the others at 55 degrees C. The application of this powerful technology for the characterization of monoclonal antibodies of therapeutic potential is discussed.  相似文献   
55.
Electrospray ionization mass spectrometry (ESI-MS) has proven to be a useful tool for examining noncovalent complexes between proteins and a variety of ligands. It has also been used to distinguish between denatured and refolded forms of proteins. Surfactants are frequently employed to enhance solubilization or to modify the tertiary or quaternary structure of proteins, but are usually considered incompatible with mass spectrometry. A broad range of ionic, nonionic, and zwitterionic surfactants was examined to characterize their effects on ESI-MS and on protein structure under ESI-MS conditions. Solution conditions studied include 4% acetic acid/50% acetonitrile/46% H2O and 100% aqueous. Of the surfactants examined, the nonionic saccharides, such as n-dodecyl-beta-D-glucopyranoside, at 0.1% to 0.01% (w/v) concentrations, performed best, with limited interference from chemical background and adduct formation. Under the experimental conditions used, ESI-MS performance in the presence of surfactants was found to be unrelated to critical micelle concentration. It is demonstrated that surfactants can affect both the tertiary and quaternary structures of proteins under conditions used for ESI-MS. However, several of the surfactants caused significant shifts in the charge-state distributions, which appeared to be independent of conformational effects. These observations suggest that surfactants, used in conjunction with ESI-MS, can be useful for protein structure studies, if care is used in the interpretation of the results.  相似文献   
56.
Conformational change of bovine serum albumin by heat treatment   总被引:1,自引:0,他引:1  
The thermal denaturation of bovine serum albumin (BSA) was studied at pH 2.8 and 7.0 in the range of 2–65°C. The relative proportions of -helix, -structure, and disordered structure in the protein conformation were determined as a function of temperature, by the curve-fitting method of circular dichroism spectra. With the rise of temperature at pH 7.0, the proportion of -helix decreased above 30°C and those of -structure and disordered structure increased in the same temperature range. The structural change was reversible in the temperature range below 45°C. However, the structural change was partially reversible upon cooling to room temperature subsequent to heating at 65°C. On the other hand, the structural change of BSA at pH 2.3 was completely reversible in the temperature range of 2–65°C, probably because the interactions between domains and between subdomains might disappear due to the acid expansion. The secondary structure of disulfide bridges-cleaved BSA remained unchanged during the heat treatment up to 65°C at pH 2.8 and 7.0.  相似文献   
57.
The stability of Rhodobacter capsulatus bacterioferritin, a 24-meric homopolymer, toward denaturation on variation in pH and temperature, and increasing concentrations of urea and guanidine.HCl was investigated with native PAGE, and CD and fluorescence spectroscopies. With temperature and urea, the wild-type protein denatured without discernible intermediates in the equilibrium experiments, but with guanidine.HCl (Gnd.HCl) one or more intermediate species were apparent at relatively low Gnd.HCl concentrations. Dissociated subunit monomers, or aggregates smaller than 24-mers containing the high alpha-helical content characteristic of the native protein were not obtained at any pH without a high proportion of the 24-mer being present, and taken together with the other denaturation experiments and the construction of stable subunit dimers by site-directed mutagenesis, this observation indicates that folding of the bacterioferritin monomer could be coupled to its association into a dimer. Glu 128 and Glu 135 were replaced by alanine and arginine in a series of mutants to determine their role in stabilizing the 24-meric oligomer. The Glu128Ala, Glu135Ala and Glu135Arg variants retained a 24-meric structure, but the Glu128Ala/Glu135Ala and Glu128Arg/Glu135Arg variants were stable subunit dimers. CD spectra of the Glu135Arg, Glu128Ala/Glu135Ala, and Glu128Arg/Glu135Arg variants showed that they retained the high alpha-helical content of the wild-type protein. The 24-meric Glu135Arg variant was less stable than the wild-type protein (T(m), [Urea](50%) and [Gnd.HCl](50%) of 59 degrees C, 4.9 M and 3.2 M compared with 73 degrees C, approximately 8 M and 4.3 M, respectively), and the dimeric Glu128Arg/Glu135Arg variant was less stable still (T(m), [Urea](50%) and [Gnd.HCl](50%) of 43 degrees C, approximately 3.2 M and 1.8 M, respectively). The differences in stability are roughly additive, indicating that the salt-bridges formed by Glu 128 and Glu 135 in the native oligomer, with Arg 61 and the amino-terminal amine of neighboring subunits, respectively, contribute equally to the stability of the subunit assembly. The additivity and assembly states of the variant proteins suggest that the interactions involving Glu 128 and Glu 135 contribute significantly to stabilizing the 24-mer relative to the subunit dimer.  相似文献   
58.
We describe a new DNA sequencing method called sequencing by denaturation (SBD). A Sanger dideoxy sequencing reaction is performed on the templates on a solid surface to generate a ladder of DNA fragments randomly terminated by fluorescently labeled dideoxyribonucleotides. The labeled DNA fragments are sequentially denatured from the templates and the process is monitored by measuring the change in fluorescence intensities from the surface. By analyzing the denaturation profiles, the base sequence of the template can be determined. Using thermodynamic principles, we simulated the denaturation profiles of a series of oligonucleotides ranging from 12 to 32 bases and developed a base-calling algorithm to decode the sequences. These simulations demonstrate that DNA molecules up to 20 bases can be sequenced by SBD. Experimental measurements of the melting profiles of DNA fragments in solution confirm that DNA sequences can be determined by SBD. The potential limitations and advantages of SBD are discussed. With SBD, millions of sequencing reactions can be performed on a small area on a surface in parallel with a very small amount of sequencing reagents. Therefore, DNA sequencing by SBD could potentially result in a significant increase in speed and reduction in cost in large-scale genome resequencing.  相似文献   
59.
Development of protein stabilizing reagents, that suppress aggregation and assist refolding, is an important issue in biochemical technology related with the synthesis and preservation of therapeutic or other functional proteins. In the precedent research, we have developed a structured poly(ethylene glycol) (PEG) analogue with triangular geometry, which turns into a dehydrated state above ca. 60 °C. Focusing on this rather lower dehydration temperature than that of conventional linear PEGs, a capability of the triangle-PEG to stabilize proteins under thermal stimuli was studied for citrate synthase, carbonic anhydrase, lysozyme and phospholipase. Variable temperature high-tension voltage and circular dichroism spectroscopic studies on the mixtures of these proteins and the triangle-PEG showed that the triangle-PEG stabilizes carbonic anhydrase, lysozyme and phospholipase that exhibit denaturation temperatures higher than 60 °C, while substantially no stabilization was observed for citrate synthase that denatures below 60 °C. Hence, the dehydrated triangle-PEG likely interacts with partially unfolded proteins through the hydrophobic interaction to suppress protein aggregation.  相似文献   
60.
In the present study, a small set of reversible or irreversible 4-anilinoquinazoline EGFR inhibitors was tested in A549 cells at early (1 h) and late (8 h) time points after inhibitor removal from culture medium. A combination of assays was employed to explain the observed long-lasting inhibition of EGFR autophosphorylation. We found that EGFR inhibition at 8 h can be due, besides to the covalent interaction of the inhibitor with Cys797, as for PD168393 (2) and its prodrug 4, to the intracellular accumulation of non-covalent inhibitors by means of an active cell uptake, as for 5 and 6. Compounds 5–6 showed similar potency and duration of inhibition of EGFR autophosphorylation as the covalent inhibitor 2, while being devoid of reactive groups forming covalent bonds with protein thiols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号