首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   94篇
  国内免费   14篇
  753篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   6篇
  2019年   15篇
  2018年   13篇
  2017年   17篇
  2016年   17篇
  2015年   11篇
  2014年   25篇
  2013年   46篇
  2012年   10篇
  2011年   14篇
  2010年   23篇
  2009年   22篇
  2008年   44篇
  2007年   27篇
  2006年   41篇
  2005年   33篇
  2004年   37篇
  2003年   26篇
  2002年   22篇
  2001年   19篇
  2000年   13篇
  1999年   22篇
  1998年   21篇
  1997年   13篇
  1996年   18篇
  1995年   14篇
  1994年   21篇
  1993年   17篇
  1992年   16篇
  1991年   15篇
  1990年   4篇
  1989年   8篇
  1988年   5篇
  1987年   8篇
  1986年   7篇
  1985年   11篇
  1984年   14篇
  1983年   11篇
  1982年   14篇
  1981年   2篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有753条查询结果,搜索用时 31 毫秒
41.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   
42.
Crippen GM 《Biopolymers》2004,75(3):278-289
This is our second type of model for protein folding where the configurational parameters and the effective potential energy function are chosen in such a way that all conformations are described and the canonical partition function can be evaluated analytically. Structure is described in terms of distances between pairs of sequentially contiguous blocks of eight residues, and all possible conformations are grouped into 71 subsets in terms of bounds on these distances. The energy is taken to be a sum of pairwise interactions between such blocks. The 210 energy parameters were adjusted so that the native folds of 32 small proteins are favored in free energy over the denatured state. We then found 146 proteins having negligible sequence similarity to any of the training proteins, yet the free energy of the respective correct native states were favored over the denatured state.  相似文献   
43.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   
44.
To examine the factors involved with nucleosome stability, we reconstituted nonacetylated particles containing various lengths (192, 162, and 152 base pairs) of DNA onto the Lytechinus variegatus nucleosome positioning sequence in the absence of linker histone. We characterized the particles and examined their thermal stability. DNA of less than chromatosome length (168 base pairs) produces particles with altered denaturation profiles, possibly caused by histone rearrangement in those core-like particles. We also examined the effects of tetra-acetylation of histone H4 on the thermal stability of reconstituted nucleosome particles. Tetra-acetylation of H4 reduces the nucleosome thermal stability by 0.8 degrees C as compared with nonacetylated particles. This difference is close to values published comparing bulk nonacetylated nucleosomes and core particles to ones enriched for core histone acetylation, suggesting that H4 acetylation has a dominant effect on nucleosome particle energetics.  相似文献   
45.
Giuseppe Graziano 《Biopolymers》2015,103(12):711-718
The model developed for cold denaturation (Graziano, PCCP 2010, 12, 14245‐14252) is extended to rationalize the dependence of protein conformational stability upon hydrostatic pressure, at room temperature. A pressure− volume work is associated with the process of cavity creation for the need to enlarge the liquid volume against hydrostatic pressure. This contribution destabilizes the native state that has a molecular volume slightly larger than the denatured state due to voids existing in the protein core. Therefore, there is a hydrostatic pressure value at which the pressure−volume contribution plus the conformational entropy loss of the polypeptide chain are able to overwhelm the stabilizing gain in translational entropy of water molecules, due to the decrease in water accessible surface area upon folding, causing denaturation. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 711–718, 2015.  相似文献   
46.
SlyD, the sensitive-to-lysis protein from Escherichia coli, consists of two domains. They are not arranged successively along the protein chain, but one domain, the “insert-in-flap” (IF) domain, is inserted internally as a guest into a surface loop of the host domain, which is a prolyl isomerase of the FK506 binding protein (FKBP) type. We used SlyD as a model to elucidate how such a domain insertion affects the stability and folding mechanism of the host and the guest domain. For these studies, the two-domain protein was compared with a single-domain variant SlyDΔIF, SlyD* without the chaperone domain (residues 1-69 and 130-165) in which the IF domain was removed and replaced by a short loop, as present in human FKBP12. Equilibrium unfolding and folding kinetics followed an apparent two-state mechanism in the absence and in the presence of the IF domain. The inserted domain decreased, however, the stability of the host domain in the transition region and decelerated its refolding reaction by about 10-fold. This originates from the interruption of the chain connectivity by the IF domain and its inherent instability. To monitor folding processes in this domain selectively, a Trp residue was introduced as fluorescent probe. Kinetic double-mixing experiments revealed that, in intact SlyD, the IF domain folds and unfolds about 1000-fold more rapidly than the FKBP domain, and that it is strongly stabilized when linked with the folded FKBP domain. The unfolding limbs of the kinetic chevrons of SlyD show a strong downward curvature. This deviation from linearity is not caused by a transition-state movement, as often assumed, but by the accumulation of a silent unfolding intermediate at high denaturant concentrations. In this kinetic intermediate, the FKBP domain is still folded, whereas the IF domain is already unfolded.  相似文献   
47.
Chromatophores isolated from cells of Rhodobacter sphaeroides exposed to hypertonic solutions were enriched in cardiolipin (CL). Because CL levels are raised by increasing the incubation time of R. sphaeroides in hypertonic solutions, it was possible to isolate chromatophores containing different CL amounts by starting from cells incubated in hypertonic solutions for different times. The functionality and stability of the photosynthetic proteins in chromatophore membranes having different CL levels were investigated. Reaction center (RC) stabilization with respect to thermal denaturation and photoxidative damage was observed by flash photolysis and fluorescence emission experiments in CL-enriched chromatophores. To gain detailed information about the structures of endogenous CLs, this lipid family was isolated and purified by preparative TLC, and characterized by high-resolution mass spectrometry. We conclude that osmotic shock can be used as a tool to modulate CL levels in isolated chromatophores and to change the composition of the RC lipid annulus, avoiding membrane artifacts introduced by the use of detergents.  相似文献   
48.
To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[11C]methylphenyl)thiazol-2-yl]-1-carboxamide ([11C]DFMC, [11C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1 nM) for FAAH. [11C]1 was synthesized by C11C coupling reaction of arylboronic ester 2 with [11C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [11C]1 was obtained with a radiochemical yield of 20 ± 10% (based on [11C]CO2, decay-corrected, n = 5) and specific activity of 48–166 GBq/μmol. After the injection of [11C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [11C]1 revealed high uptakes in the cerebellar nucleus (SUV = 2.4) and frontal cortex (SUV = 2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30 min after the radioligand injection. The present results indicate that [11C]1 is a promising PET ligand for imaging of FAAH in living brain.  相似文献   
49.
Biomarkers are widely used in clinical diagnosis, prognosis and therapy monitoring. Here, we developed a protocol for the efficient and selective enrichment of small and low concentrated biomarkers from human serum, involving a 95% effective depletion of high‐abundant serum proteins by partial denaturation and enrichment of low‐abundant biomarkers by size exclusion chromatography. The recovery of low‐abundance biomarkers was above 97%. Using this protocol, we quantified the tumour markers DcR3 and growth/differentiation factor (GDF)15 from 100 μl human serum by isotope dilution mass spectrometry, using 15N metabolically labelled and concatamerized fingerprint peptides for the both proteins. Analysis of three different fingerprint peptides for each protein by liquid chromatography electrospray ionization mass spectrometry resulted in comparable concentrations in three healthy human serum samples (DcR3: 27.23 ± 2.49 fmol/ml; GDF15: 98.11 ± 0.49 fmol/ml). In contrast, serum levels were significantly elevated in tumour patients for DcR3 (116.94 ± 57.37 fmol/ml) and GDF15 (164.44 ± 79.31 fmol/ml). Obtained data were in good agreement with ELISA and qPCR measurements, as well as with literature data. In summary, our protocol allows the reliable quantification of biomarkers, shows a higher resolution at low biomarker concentrations than antibody‐based strategies, and offers the possibility of multiplexing. Our proof‐of‐principle studies in patient sera encourage the future analysis of the prognostic value of DcR3 and GDF15 for colon cancer patients in larger patient cohorts.  相似文献   
50.
The thermal denaturation of Lactobacillus confusus l-2-Hydroxyisocaproate Dehydrogenase (l-HicDH) has been studied by Differential Scanning Calorimetry (DSC). The stability of this enzyme has been investigated at different pH conditions. The results of this study indicate that the thermal denaturation of this enzyme is irreversible and the T m is dependent on the scan-rate, which suggests that the denaturation process of l-HicDH is kinetically determined. The heat capacity function of l-HicDH shows a single peak with the T m values between 52.14°C and 55.89°C at pH 7.0 at different scan rates. These results indicate that the whole l-HicDH could unfold as a single cooperative unit, and intersubunit interactions of this homotetrameric enzyme must play a significant role in the stabilization of the whole enzyme. The rate constant of the unfolding is analyzed as a first order kinetic constant with the Arrhenius equation, and the activation energy has been calculated. The variation of the activation energy values obtained with different methods does not support the validity of the one-step irreversible model. The denaturation pathway was described by a three-state model, N → U → F, in which the dissociation of the tetramer takes place as an irreversible step before the irreversible unfolding of the monomers. The calorimetric enthalpy associated with the irreversible dissociation and the calorimetric enthalpy associated with the unfolding of the monomer were obtained from the best fitting procedure. Thermal unfolding of l-HicDH was also studied using Circular Dichroism (CD) spectroscopy. Both methods yielded comparable values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号