首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6143篇
  免费   112篇
  国内免费   56篇
  2023年   46篇
  2022年   45篇
  2021年   55篇
  2020年   89篇
  2019年   63篇
  2018年   91篇
  2017年   45篇
  2016年   66篇
  2015年   105篇
  2014年   136篇
  2013年   320篇
  2012年   114篇
  2011年   446篇
  2010年   349篇
  2009年   494篇
  2008年   408篇
  2007年   408篇
  2006年   360篇
  2005年   341篇
  2004年   376篇
  2003年   150篇
  2002年   211篇
  2001年   83篇
  2000年   87篇
  1999年   105篇
  1998年   170篇
  1997年   89篇
  1996年   114篇
  1995年   180篇
  1994年   101篇
  1993年   49篇
  1992年   65篇
  1991年   57篇
  1990年   57篇
  1989年   36篇
  1988年   37篇
  1987年   36篇
  1986年   20篇
  1985年   29篇
  1984年   45篇
  1983年   33篇
  1982年   56篇
  1981年   28篇
  1980年   34篇
  1979年   37篇
  1978年   13篇
  1977年   11篇
  1976年   7篇
  1975年   5篇
  1974年   5篇
排序方式: 共有6311条查询结果,搜索用时 15 毫秒
81.
Abstract: Iron is a universal cofactor for mitochondrial energy generation and supports the growth and differentiation of all cell types. In the CNS, iron is a key component of systems responsible for myelination and the synthesis of several neurotransmitters. In this study the spatial and temporal pattern of iron and its regulatory proteins transferrin and ferritin are quantitatively examined in the rat CNS during the first 3 weeks of postnatal life and in adults and aged animals. The midbrain, the cerebral cortex, and the cerebellum-pons are examined independently. Iron, transferrin, and ferritin concentrations are highest in all three brain regions at birth and decrease in each region to minimum levels during the third postnatal week. The decrease in levels of iron, transferrin, and ferritin is most pronounced in the cerebellum-pons and cortex and least in the midbrain. From postnatal day 17, iron (total iron content) and ferritin levels increase throughout the lifetime of the rat. In contrast, transferrin levels remain fairly constant in each brain region after postnatal day 24. The midbrain region, which includes the iron-rich regions such as the globus pallidus, substantia nigra, and red nucleus, has the least change in iron with development, has the highest level of ferritin during development, and consistently has the highest level of transferrin at all ages. These observations are consistent with reports that iron is important for normal motor function. Transferrin did not increase after postnatal day 24 in the three brain regions examined despite increasing amounts of iron, which implies a decrease in iron mobility in the aged rats, a finding that is consistent with observations of human brain tissue. The data reported in this study demonstrate that iron acquisition and mobilization systems in the CNS are established early in development and that the overall pattern of acquisition among brain regions is similar. These data offer support and insight into established concepts that a sufficient iron supply is critical for normal neurological development.  相似文献   
82.
The iron chelators desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone (PIH), 2,2-bipyridine, diethylenetriamine penta-acetic acid (DTPA) and 1,2 dimethyl-3-hydroxy pyrid-4-one (CP20) were analysed for their ability to change59Fe uptake and release from the brain of 15- and 63-day rats either during or after intravenous injection of59Fe-125I-transferrin. DTPA was the only chelator unable to significantly reduce iron uptake into the brain of 15-day rats. This indicates that iron is not released from transferrin at the luminal surface of brain capillary endothelial cells. CP20 was able to reduce iron uptake in the brain by 85% compared to 28% with DFO. Only CP20 was able to significantly reduce brain iron uptake in 63 day rats. Once59Fe had entered the brain no chelator used was able to mediate its release. All of the chelators except CP20 had similar effects on femur iron uptake as they did on brain uptake, suggesting similar iron uptake mechanisms. It is concluded that during the passage of transferrin-bound iron into the brain the iron is released from transferrin within endothelial cells after endocytosis of transferrin.  相似文献   
83.
The interactions of VO2+ with phytate to form both soluble and insoluble complexes, have been studied by electronic absorption spectroscopy. A soluble 1∶1 VO2+: phytate complex is formed at pH <1. At higher pH-values insoluble complexes are produced. Two different solid complexes, obtained respectively at pH=2 and 4, were isolated and characterized. The maximal bonding ratio of VO2+: phytate was found to be 4, on the basis of a pH binding profile.  相似文献   
84.
Abstract: Uptake of 59Fe from blood into brains of anaesthetized rats and mice has been studied by intravenous infusion of [59Fe]ferrous ascorbate or of 59Fe-transferrin, the results not being significantly different. Uptakes in the rat were linear with time, but increased at longer times in the mouse. Transfer constants, K in (in ml/g/h × 103), for cerebral hemispheres were 5.2 in the adult rat and 5.6 in the mouse. These K in values corresponded to 59Fe influxes of 145 and 322 pmol/g/h, respectively. 59Fe uptake into the mouse brain occurred in the following order: cerebellum > brainstem > frontal cerebral cortex > parietal cortex > occipital cortex > hippocampus > caudate nucleus. In genetically hypotransferrinaemic mice, 59Fe uptake into brain was 80–95 times greater than in To strain mice. Pretreatment of young rats and mice with monoclonal antibodies to transferrin receptors, i.e., the anti-rat immunoglobulin G OX 26 and the anti-mouse immunoglobulin M RI7 208, inhibited 59Fe uptake into spleen by 94% and 98%, respectively, indicating saturation of receptors. The antibodies reduced 59Fe uptake into rat brain by 35–60% and that into mouse brain by 65–85%. Although a major portion of iron transport across the blood-brain barrier is normally transferrin-mediated, non-transferrin-bound iron readily crosses it at low serum transferrin levels.  相似文献   
85.
Abstract: Exposure to manganese compounds often occurs as the result of industrial production or mining. Although manganese appears in traces in animal and human tissue and is essential to certain biological processes, it is also toxic. In humans and animals, toxicity is mainly associated with the nervous system. The mechanism underlying behavioral and biochemical alterations observed after manganese intoxication is not fully understood. We have shown that the manganese present in serum after exposure to manganese oxide is bound to transferrin as trivalent manganic ion. In this study of manganese uptake and storage we used a clone of human neuroblastoma cells (SHSY5Y). These cells differentiate and express catechol-aminergic properties. Saturation binding analysis of the transferrin-manganese complex to the cells revealed a single class of binding sites, with an apparent K D of 13 ± 1 n M and a density of 11, 000 ± 2, 000 binding sites per cell. The complex was internalized in a temperature-dependent way and reached saturation after 2 h when ∼2% of the added manganese had been internalized. About 80% of the internalized manganese was found in ferritin after 24 h of exposure. The results demonstrate that the transferrin receptor on SHSY5Y cells can bind and internalize a manganese-transferrin complex as efficiently as an iron-transferrin complex, although a saturation of the manganese uptake was achieved.  相似文献   
86.
Greigite (Fe3S4) and pyrite (FeS2) particles in the magnetosomes of a many-celled, magnetotactic prokaryote (MMP), common in brackish-to-marine, sulfidic, aquatic habitats, contained relatively high concentrations of copper which ranged from about 0.1 to 10 atomic per cent relative to iron. In contrast, the greigite particles in the magnetosomes of a curved magnetotactic bacterium collected from the same sampling site did not contain significant levels of copper. The ability of the MMP to biomineralize copper within its magnetosomes appeared to be limited to that organism and dependent upon the site from which it was collected. Although the chemical mechanism and physiological function of copper accumulation in the magnetosomes of the MMP is unclear, the presence of copper is the first evidence that another transition metal ion could be incorporated in the mineral phase of the magnetosomes of a magnetotactic bacterium.Abbreviation MMP many-celled magnetotactic prokaryote  相似文献   
87.
Abstract Mutants of Shewanella putrefaciens MR-1 deficient in menaquinone and methylmenaquinone, but which have wild-type levels of ubiquinone, retain the ability to use trimethylamine N -oxide as an electron acceptor, but they lose the ability to use nitrate, iron(III), and fumarate as electron acceptors. These mutants also show a reduced rate of manganese(IV) reduction. One of these mutants could be restored to essentially wild-type phenotype by supplementing the medium with 1,4-dihydroxy-2-naphthoic acid. A requirement for naphthoquinones in iron(III) reduction and a preference for naphthoquinones in manganese(IV) reduction provide further support that the metal reducing systems in MR-1 are linked to anaerobic respiration.  相似文献   
88.
Abstract The transferrin receptor or transferrin-binding proteins (Tbps) of 50 strains of Neisseria meningitidis belonging to different serogroups were examined by Western blotting using two rabbit antisera raised against Tbp purified from N. meningitidis strains B16B6 and M982. On the basis of the reactivity of Tbp2 with the antisera two patterns were observed and allowed the classification of 74% of the strains in group I (M982-like strains) and 26% in group II (B16B6-like strains). Southern blot analysis was performed on the genomic DNA of 16 meningococcal strains and showed that under stringent conditions, the tbp2 probes were specific for each group identified. Both immunological and genomic analyses have led to the identification within N. meningitidis strains of two major families distinguished on the basis of the characteristics of Tbp2 molecules, independently of serogroup, type or subtype.  相似文献   
89.
BackgroundParkinson’ s disease (PD) is a progressive neurodegenerative disease featured neuropathologically by the loss of dopaminergic neurons of the substantia nigra (SN). Iron overload in the SN is mainly relative to the pathology and pathogenesis of PD. Postmortem samples of PD has indicated the increased levels of brain iron. However, there is no consensus on iron content through iron-sensitive magnetic resonance imaging (MRI) techniques and the alteration of iron and iron related metabolism markers levels in blood and cerebrospinal fluids (CSF) are still unclear based on the current studies. In this study, we performed a meta-analysis to explore the iron concentration and iron metabolism markers levels through iron-sensitive MRI quantification and body fluid.MethodsA comprehensive literature search was performed in PubMed, EMBASE and Cochrane Library databases for relevant published studies that analyzed iron load in the SN of PD patients using quantitative susceptibility mapping (QSM) or susceptibility weighting imaging (SWI), and iron metabolism markers, iron, ferritin, transferrin, total iron-binding capacity(TIBC)in CSF sample or serum/plasma sample (from Jan 2010 to Sep 2022 to filter these inaccurate researches attributed to unadvanced equipment, inaccurate analytical methods). Standardized mean differences (SMD) or mean differences (MD) and 95% confidence intervals (CI) with random or fixed effect model was used to estimate the results.ResultsForty-two articles fulfilled the inclusion criteria including 19 for QSM, 6 for SWI, and 17 for serum/plasma/CSF sample including 2874 PD patients and 2821 healthy controls (HCs). Our meta-analysis results founded a notable difference for QSM values increase (19.67, 95% CI=18.69–20.64) and for SWI measurements (−1.99, 95% CI= −3.52 to −0.46) in the SN in PD patients. However, the serum/plasma/CSF iron levels and serum/plasma ferritin, transferrin, total iron-binding capacity (TIBC) did not differ significantly between PD patients and HCs.ConclusionsOur meta-analysis showed the consistent increase in the SN in PD patients using QSM and SWI techniques of iron-sensitive MRI measures while no significant differences were observed in other iron metabolism markers levels.  相似文献   
90.
BackgroundTrace elements exhibit essential functions in many physiological processes. Thus, for research focusing on trace element homeostasis and metabolism analytical methods allowing for multi-element analyses are fundamental. Small sample amounts may be a big challenge in trace element analyses especially if also other end points want to be addressed in the same sample. Therefore, the aim of the present study was to examine trace elements (iron, copper, zinc, and selenium) in murine liver tissue prepared by a RIPA buffer-based lyses method.Methods and resultsAfter centrifugation, lysates and pellets were obtained and trace elements were analyzed with TXRF in liver lysates. The results were compared to that obtained by a standard microwave-assisted acidic digestion with subsequent ICP-MS/MS analysis of the same liver tissue, liver lysates, and remaining pellets. In addition, trace element concentrations, determined in murine serum with both methods, were compared. For serum samples, both TXRF and ICP-MS/MS provide similar and highly correlating results. Furthermore, in liver lysate samples prepared with RIPA buffer, comparable trace element concentrations were measured by TXRF as with the standard digestion technique and ICP-MS/MS. Only marginal amounts of trace elements were detected in the pellets.ConclusionTaken together, the results obtained by the present study indicate that the RIPA buffer-based method is suitable for sample preparation for trace element analyses via TXRF, at least for the here investigated murine liver samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号