首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2274篇
  免费   29篇
  国内免费   33篇
  2023年   23篇
  2022年   14篇
  2021年   21篇
  2020年   41篇
  2019年   17篇
  2018年   39篇
  2017年   18篇
  2016年   18篇
  2015年   64篇
  2014年   82篇
  2013年   132篇
  2012年   61篇
  2011年   132篇
  2010年   103篇
  2009年   152篇
  2008年   142篇
  2007年   154篇
  2006年   104篇
  2005年   98篇
  2004年   83篇
  2003年   63篇
  2002年   53篇
  2001年   28篇
  2000年   37篇
  1999年   42篇
  1998年   45篇
  1997年   43篇
  1996年   43篇
  1995年   47篇
  1994年   40篇
  1993年   33篇
  1992年   32篇
  1991年   44篇
  1990年   36篇
  1989年   23篇
  1988年   24篇
  1987年   20篇
  1986年   11篇
  1985年   19篇
  1984年   29篇
  1983年   18篇
  1982年   34篇
  1981年   19篇
  1980年   21篇
  1979年   22篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有2336条查询结果,搜索用时 15 毫秒
91.
Young rats (21 days old) made nutritionally iron deficient, by feeding them a semisynthetic diet containing skimmed milk for 5 weeks, had significantly lowered hemoglobin levels (5.2 +/- 4 g/100 ml). The nonheme iron content in caudate nucleus was decreased by 47%. The behavioral response of iron-deficient rats to apomorphine (2 mg/kg) and the density of 3,4-dihydroxyphenylethylamine (dopamine) D2 receptors, as measured by [3H]spiperone binding in caudate nucleus, were significantly reduced by 70 and 53%, respectively. The possibility that nutritional iron deficiency may affect protein content in brain was investigated by measuring the apparent concentration of proteins in caudate nucleus and nucleus accumbens from iron-deficient and control animals using two-dimensional gel electrophoresis. The data indicate that iron deficiency can affect content in these two brain regions. Significant changes in the content of 10 proteins were noted in the caudate nucleus and nucleus accumbens in iron-deficient rats. The albumin level was significantly increased in both regions studied, whereas the neuron-specific enolase level was increased in the nucleus accumbens and the glial fibrillary acidic protein level was reduced in the caudate nucleus. The significance of these protein content changes, as well as a reduction in content of a 94-kilodalton protein (a molecular size similar to that of the D2 dopamine receptor), remains to be established.  相似文献   
92.
《Process Biochemistry》2014,49(1):130-139
Drug substance (DS) color is an important quality attribute for release, stability and comparability studies of biologics. With the increase of DS concentrations and biologics pipelines made in chemically defined media, atypical DS color other than colorless or pale yellow has been recently reported in the biopharmaceutical industry. We recently observed a brown DS color in manufacturing. Although analytical characterization data indicated that the brown color DS had no major quality issue, it is necessary to find the root cause and reduce DS color to ease placebo design for clinical use. It was demonstrated that the brown color was caused by the chemically defined basal medium containing high levels of iron and vitamin B12 (VB12) regardless of cell lines. Iron caused tryptophan oxidation in the protein to form N-formylkynurenine and kynurenine products, which likely contributed to a yellow DS color. A pink DS color was caused by the residual VB12 bound to DS. The brown color was the result of the combinatory effect of yellow and pink colors. Finally a modified basal medium was developed to produce a pale yellow DS in manufacturing.  相似文献   
93.
目的:探讨左卡尼汀联合蔗糖铁对血透患者肾性贫血及氧化应激的影响。方法:抽选我院2010年3月-2013年5月行维持血透治疗的肾性贫血患者79例,采用数字表法分为对照组(39例)和观察组(40例),对照组采用促红细胞生成素(EPO)、单用蔗糖铁及常规对症治疗,观察组在对照组基础上联用左卡尼汀治疗。比较两组患者治疗前、治疗6个月后血红蛋白(Hb)、血细胞比容(Hct)、血浆铁蛋白(SF)、转铁蛋白饱和度(TSAT)、晚期蛋白质氧化产物(AOPP)及血丙二醛(MDA)水平,并对两组治疗开始时、治疗3、6个月时EPO使用剂量进行比较。结果:治疗6个月后,观察组患者Hb、Hct、SF、TSAT明显高于对照组(P0.05),AOPP、MDA明显低于对照组(P0.05);对照组从治疗开始到治疗6个月时一直维持较高的EPO使用剂量,而观察组EPO用量依次递减,至治疗6个月时EPO用量显著低于对照组(P0.05)。结论:左卡尼汀能联合蔗糖铁治疗肾性贫血的疗效显著,能有效缓解氧化应激反应,降低EPO用量,值得临床推广。  相似文献   
94.
On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28‐ to 3.26‐Gyr‐old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56Fe values of ?1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass‐independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass‐independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro‐organisms closely related to the last common ancestor had the ability to reduce Fe(III).  相似文献   
95.
Background and aimSodium nitrite (NaNO2) is an inorganic salt with numerous applications in a variety of industries, as well as in medicine. Nevertheless, exposure to high levels of NaNO2 is toxic for animals and humans. Sodium nitrite intoxication is shown to decrease the activity of major antioxidant defence enzymes which is dependent on the maintenance of specific ion equilibrium. The aim of the present study was to investigate the effect of acute NaNO2 intoxication on the content of the essential metals iron (Fe), calcium (Ca) and zinc (Zn) in mouse spleen.MethodsMature male ICR mice were divided into four groups and subjected to acute NaNO2 exposure by a single intraperitoneal injection of 120 mg/kg body weight. Animals in each group were sacrificed at certain time interval after treatment (1 h, 5 h, 1 day and 2 days). Spleens were excised and processed for atomic absorption spectrometry analysis of Fe, Ca and Zn content.ResultsAt the first hour after treatment, a decrease in Fe and Ca levels was observed. One day following NaNO2 administration, Zn concentration reached its lowest value and Ca levels remained lower, compared to the untreated controls. In contrast, Fe concentration increased on the first and second day after treatment.ConclusionThe results of the present study demonstrate that acute NaNO2 intoxication provokes changes in the endogenous levels of Fe, Ca and Zn in mouse spleen. These findings suggest disruption of the ionic balance and impact on the activity of antioxidant defence enzymes.  相似文献   
96.
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur‐containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two‐trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.  相似文献   
97.
The studies aimed to verify the effect of Cu, Zn and Fe glycine chelate on the antioxidative status in the thigh meat of broiler chickens. The study assumption was that due to the antioxidative or prooxidative effect of Cu, Zn and Fe, these elements supplemented to chickens in an easily assimilable form would modify the antioxidative status of meat and those having a prooxidative effect could deteriorate the quality of meat. The experiment involved three hundred and fifty Ross 308 chickens divided into seven equipotent experimental groups. Over 42 days of the experiment, the chickens were administered Cu, Zn and Fe glycine chelates in an amount corresponding to 50% of the requirement (experimental factor I) or 25% of the requirement (experimental factor II). The level of oxidative stress indicators such as superoxide dismutase, catalase, glutathione, glutathione peroxidase and malondialdehyde was determined in the muscles and blood. The groups receiving Zn or Cu chelate showed statistically confirmed higher activity of superoxide dismutase, catalase, and a higher level of glutathione in comparison to the group receiving Fe chelate. In order to increase the antioxidative stability of thigh meat, it is sufficient that broiler chickens receive Zn or Cu in the form of glycine chelate in an amount covering 25% of their requirement of such minerals. On the other hand, the use of Fe glycine chelates decreased antioxidative stability due to an increase in the level of malondialdehyde, so it should be considered whether the administration of pro-oxidative Fe chelate to broilers is advisable.  相似文献   
98.
Free iron is capable of stimulating the production of free radicals which cause oxidative damage such as lipid peroxidation. One of the most important mechanisms of antioxidant defense is thus the sequestration of iron in a redox-inactive form by transferrin. In diabetes mellitus, increased oxidative stress and lipid peroxidation contribute to chronic complications but it is not known if this is related to abnormalities in transferrin function. In this study we investigated the role of transferrin concentration and glycation. The antioxidant capacity of apotransferrin to inhibit lipid peroxidation by iron-binding decreased in a concentration-dependent manner from 89% at <formula>≥2 mg/ml</formula> to 42% at 0.5 mg/ml. Pre-incubation of apotransferrin with glucose for 14 days resulted in a concentration-dependent increase of glycation: 1, 5 and 13 μmol fructosamine/g transferrin at 0, 5.6 and 33.3 mmol/l glucose respectively, p<0.001. This was accompanied by a decrease in the iron-binding antioxidant capacity of apotransferrin. In contrast, transferrin glycation by up to 33.3 mmol/l glucose did not affect chemiluminescence-quenching antioxidant capacity, which is iron-independent. Colorimetric evaluation of total iron binding capacity in the presence of an excess of iron (iron/transferrin molar ratio=2.4) also decreased from 0.726 to 0.696 and 0.585 mg/g transferrin after 0, 5.6 and 33.3 mmol/l glucose, respectively, p<0.01. In conclusion, these results suggest that lower transferrin concentration and its glycation can, by enhancing the pro-oxidant effects of iron, contribute to the increased lipid peroxidation observed in diabetes.  相似文献   
99.
Deferoxamine (DFO) is a drug widely used for iron overload treatment to reduce body iron burden. In the present study, it was shown in mouse epidermal JB6 cells that all iron compounds transiently induced extracellular signal-regulated kinases (ERK) phosphorylation, whereas DFO further enhanced ERK phosphorylation over long periods. The ERK phosphorylation by DFO treatment appears to be due to the inhibition of MAPK phosphatases (MKP) by DFO. The combined effects of iron-initiated MAPK activation and DFO-mediated MKP inhibition resulted in a synergistic enhancement on AP-1 activities. The results indicate that the interplay between MAPK and MKP is important in regulating the extent of AP-1 activation. It is known that administration of DFO in iron overload patients often results in allergic responses at the injection sites. The results suggest that this synergistic AP-1 activation might play a role in DFO-induced skin immune responses of iron overload patients.  相似文献   
100.
《Free radical research》2013,47(3):366-373
Abstract

Nasal polyposis is a multifactorial disease with a strong inflammatory component. Its pathogenesis is often associated with ROS production catalysed by redox-active iron. This study aimed to characterize the roles of iron homeostasis and redox status in the pathogenesis of polyposis. Nasal polyps (NP) from asthmatics and non-asthmatics and turbinates from controls and NP-patients were analysed for ferritin, ferritin-bound iron (FBI) and levels of methionine-centred redox cycle proteins. The ferritin content in both NPs was significantly higher than in adjacent turbinates. No differences in FBI were observed between both NP groups and both turbinates groups, while in NPs it was significantly higher. In NP-turbinates the highest levels of redox proteins were observed. In conclusion, re-distribution of iron occurs upon the development of NP. While FBI is elevated in NPs, the adjacent turbinate remain iron-poor and low-inflammatory, suggesting the formation of virtual boundary between these tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号