全文获取类型
收费全文 | 8417篇 |
免费 | 397篇 |
国内免费 | 210篇 |
专业分类
9024篇 |
出版年
2024年 | 3篇 |
2023年 | 64篇 |
2022年 | 126篇 |
2021年 | 128篇 |
2020年 | 146篇 |
2019年 | 208篇 |
2018年 | 220篇 |
2017年 | 159篇 |
2016年 | 142篇 |
2015年 | 266篇 |
2014年 | 489篇 |
2013年 | 574篇 |
2012年 | 370篇 |
2011年 | 548篇 |
2010年 | 397篇 |
2009年 | 337篇 |
2008年 | 409篇 |
2007年 | 458篇 |
2006年 | 425篇 |
2005年 | 346篇 |
2004年 | 329篇 |
2003年 | 307篇 |
2002年 | 269篇 |
2001年 | 185篇 |
2000年 | 183篇 |
1999年 | 185篇 |
1998年 | 177篇 |
1997年 | 190篇 |
1996年 | 147篇 |
1995年 | 133篇 |
1994年 | 125篇 |
1993年 | 130篇 |
1992年 | 117篇 |
1991年 | 87篇 |
1990年 | 96篇 |
1989年 | 84篇 |
1988年 | 67篇 |
1987年 | 57篇 |
1986年 | 38篇 |
1985年 | 54篇 |
1984年 | 62篇 |
1983年 | 30篇 |
1982年 | 37篇 |
1981年 | 38篇 |
1980年 | 19篇 |
1979年 | 27篇 |
1978年 | 13篇 |
1977年 | 9篇 |
1976年 | 10篇 |
1972年 | 1篇 |
排序方式: 共有9024条查询结果,搜索用时 15 毫秒
51.
《European journal of cell biology》2022,101(2):151208
The vascular endothelium is an important regulator of vascular reactivity and preserves the balance between vasoconstrictor and vasodilator tone during normal physiologic conditions. Example endothelial-derived vasoconstrictors include endothelin-1 and thromboxane A2; example vasodilators include nitric oxide and prostacyclin. A growing body of evidence points to the existence of a non-nitric oxide, non-prostacyclin endothelium-derived vasodilatory factor of currently unclear identity, often referred to as endothelium-derived hyperpolarizing factor (EDHF). Recent research testifies to the significance of EDHF in endothelium-dependent vascular smooth muscle relaxation. Special emphasis has been placed on the role of small conductance calcium-activated potassium channels (SK) in facilitating the endothelial and vascular responses to EDHF across the microcirculation, including coronary, mesenteric, and pulmonary vascular beds. Meanwhile, decreased activity of endothelial SK channel activity has been implicated in the pathology of a variety of disease states that alter the balance between vasodilator and vasoconstrictor tone. Hence the primary goal of this review is to characterize the physiology of endothelial SK channels in the microvasculature under normal and pathological conditions. Themes of regulation and dysregulation of SK channel activity through the action of protein kinases, reactive oxygen species, and byproducts of intermediary metabolism provide unifying principles to tie together vascular pathology in altered metabolic states ranging from hypertension to diabetes, to ischemia-reperfusion. A comprehensive understanding of SK channel pathophysiology may provide a foundation for development of new therapeutics targeting SK channels, particularly SK channel potentiators, that may have widespread application for many chronic disease states. 相似文献
52.
53.
Traxlmayr MW Wozniak-Knopp G Antes B Stadlmayr G Rüker F Obinger C 《Journal of biotechnology》2011,155(2):193-202
Recently, it has been demonstrated that loops of the crystallizable fragment of IgG1 (IgG1-Fc) can be engineered to form antigen-binding sites. In this work C-terminal structural loops in the CH3 domains of homodimeric IgG1-Fc have been functionalized to form integrin-binding sites in order to probe the effect of engineering on structural integrity and thermal stability of IgG1-Fc as well as on binding to the ligands Protein A, CD16 and FcRn, respectively. The peptide sequence GCRGDCL - a disulfide-bridged cyclic heptapeptide that confers binding to human αvβ3 integrin was introduced into AB, CD and/or EF loops and single and double mutants were heterologously expressed in Pichia pastoris. Integrin binding of engineered IgG-Fc was tested using both binding to coated αvβ3 integrin in ELISA or to αvβ3-expressing K562 cells in FACS analysis. Additionally, blocking of αvβ3-mediated cell adhesion to vitronectin was investigated. The data presented in this report demonstrate that bioactive integrin-binding peptide(s) can be grafted on the C-terminal loops of IgG-Fc without impairing binding to effector molecules. Observed differences between the investigated variants in structural stability and integrin binding are discussed with respect to the known structure of IgG-Fc and its structural loops. 相似文献
54.
55.
Calcium channels in the plasma membrane of root cells fulfill both nutritional and signaling roles. The permeability of these
channels to different cations determines the magnitude of their cation conductances, their effects on cell membrane potential
and their contribution to cation toxicities. The selectivity of the rca channel, a Ca2+-permeable channel from the plasma membrane of wheat (Triticum aestivum L.) roots, was studied following its incorporation into planar lipid bilayers. The permeation of K+, Na+, Ca2+ and Mg2+ through the pore of the rca channel was modeled. It was assumed that cations permeated in single file through a pore with three energy barriers and two
ion-binding sites. Differences in permeation between divalent and monovalent cations were attributed largely to the affinity
of the ion binding sites. The model suggested that significant negative surface charge was present in the vestibules to the
pore and that the pore could accommodate two cations simultaneously, which repelled each other strongly. The pore structure
of the rca channel appeared to differ from that of L-type calcium channels from animal cell membranes since its ion binding sites had
a lower affinity for divalent cations. The model adequately accounted for the diverse permeation phenomena observed for the
rca channel. It described the apparent submillimolar K
m
for the relationship between unitary conductance and Ca2+ activity, the differences in selectivity sequences obtained from measurements of conductance and permeability ratios, the
changes in relative cation permeabilities with solution ionic composition, and the complex effects of Ca2+ on K+ and Na+ currents through the channel. Having established the adequacy of the model, it was used to predict the unitary currents that
would be observed under the ionic conditions employed in patch-clamp experiments and to demonstrate the high selectivity of
the rca channel for Ca2+ influx under physiological conditions.
Received: 23 August 1999/Revised: 12 November 1999 相似文献
56.
57.
《Cell calcium》2019
The application of mechanical stimuli to cells often induce increases in intracellular calcium, affecting the regulation of a variety of cell functions. Although the mechanism of mechanotransduction-induced calcium increases has not been fully resolved, the involvement of mechanosensitive ion channels in the plasma membrane and the endoplasmic reticulum has been reported. Here, we demonstrate that voltage-gated L-type calcium channels play a critical role in the mechanosensitive calcium response in H9c2 rat cardiomyocytes. The intracellular calcium level in H9c2 cells increased in a reproducible dose-dependent manner in response to uniaxial stretching. The stretch-activated calcium response (SICR) completely disappeared in calcium-free medium, whereas thapsigargin and cyclopiazonic acid, inhibitors of sarcoendoplasmic reticulum calcium ATPase, partially reduced the SICR. These findings suggest that both calcium influx across the cell membrane and calcium release from the sarcoendoplasmic reticulum are involved in the SICR. Nifedipine, diltiazem, and verapamil, inhibitors of L-type calcium channels, reduced the SICR in a dose-dependent manner. Furthermore, small interfering RNA against the L-type calcium channel α1c subunit diminished the SICR dramatically. Nifedipine also diminished the mechanosensitivity of Langendorff-perfused rat heart. These results suggest that the SICR in H9c2 cardiomyocytes involves the activation of L-type calcium channels and subsequent calcium release from the sarcoendoplasmic reticulum. 相似文献
58.
Hyung‐Ju Cho Jae Young Choi Yu‐Mi Yang Jeong Hee Hong Chang‐Hoon Kim Heon Young Gee Hyun Jae Lee Dong Min Shin Joo‐Heon Yoon 《Journal of cellular biochemistry》2010,109(6):1254-1263
Adequate fluid secretion from airway mucosa is essential for maintaining mucociliary clearance, and fluid hypersecretion is a prominent feature of inflammatory airway diseases such as allergic rhinitis. House dust mite extract (HDM) has been reported to activate protease‐activated receptors (PARs), which play various roles in airway epithelia. However, the role of HDM in regulating ion transporters and fluid secretion has not been investigated. We examined the effect of HDM on ion transport in human primary nasal epithelial cells. The Ca2+‐sensitive dye Fura2‐AM was used to determine intracellular Ca2+ concentration ([Ca2+]i) by means of spectrofluorometry in human normal nasal epithelial cells (NHNE). Short‐circuit current (Isc) was measured using Ussing chambers. Fluid secretion from porcine airway mucosa was observed by optical measurement. HDM extract (10 µg/Ml) effectively cleaved the PAR‐2 peptide and induced an increase of [Ca2+]i that was abolished by desensitization with trypsin, but not with thrombin. Apical application of HDM‐induced Isc sensitive to both a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor and a Ca2+‐activated Cl? channel (CaCC) inhibitor. HDM extract also stimulated fluid secretion from porcine airway mucosa. HDM extract activated PAR‐2 and apical Cl? secretion via CaCC and CFTR, and HDM‐induced fluid secretion in porcine airway mucosa. Our results suggest a role for PAR‐2 in mucociliary clearance and fluid hypersecretion of airway mucosa in response to air‐borne allergens such as HDM. J. Cell. Biochem. 109: 1254–1263, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
59.
Nancy M. Endersby‐Harshman Thomas L. Schmidt Jessica Chung Anthony van Rooyen Andrew R. Weeks Ary A. Hoffmann 《Molecular ecology》2020,29(9):1628-1641
Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target‐site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo‐Pacific region are described and their geographical distributions investigated using genome‐wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed‐models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome‐wide variation. Mixed‐models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome‐wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo‐Pacific region, pointing to undocumented mosquito invasions between countries. 相似文献
60.
Arginine residue at position 285 (R285) in the intracellular C-terminal domain of inward rectifier potassium channel Kir2.2 is conserved in many species, but missing in previously reported human Kir2.2 sequences. We here identified the human Kir2.2 gene in normal individuals, which contained R285 in the deduced amino-acid sequence (hKir2.2/R285). All 30 individuals we examined were homozygous for Kir2.2/R285 gene. The hKir2.2/R285 was electrophysiologically functional in both mammalian cells and Xenopus oocytes. However, the hKir2.2 missing R285 was functional only in Xenopus oocytes, but not in mammalian cells. Thus, R285 in Kir2.2 is important for its functional expression in mammalian cells. 相似文献