首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1708篇
  免费   120篇
  国内免费   64篇
  2024年   2篇
  2023年   19篇
  2022年   29篇
  2021年   39篇
  2020年   43篇
  2019年   42篇
  2018年   56篇
  2017年   27篇
  2016年   33篇
  2015年   54篇
  2014年   72篇
  2013年   97篇
  2012年   52篇
  2011年   42篇
  2010年   44篇
  2009年   60篇
  2008年   59篇
  2007年   68篇
  2006年   84篇
  2005年   73篇
  2004年   65篇
  2003年   66篇
  2002年   52篇
  2001年   39篇
  2000年   36篇
  1999年   36篇
  1998年   44篇
  1997年   31篇
  1996年   30篇
  1995年   26篇
  1994年   47篇
  1993年   32篇
  1992年   37篇
  1991年   39篇
  1990年   24篇
  1989年   33篇
  1988年   37篇
  1987年   22篇
  1986年   30篇
  1985年   34篇
  1984年   26篇
  1983年   28篇
  1982年   21篇
  1981年   22篇
  1980年   11篇
  1979年   12篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1971年   2篇
排序方式: 共有1892条查询结果,搜索用时 31 毫秒
51.
Mitochondrial protein import   总被引:1,自引:0,他引:1  
Most polypeptides of mitochondria are imported from the cytosol. Precursor proteins contain targeting and sorting information, often in the form of amino-terminal presequences. Precursors first bind to receptors in the outer membrane. Two putative import receptors have been identified: a 19-kilodalton protein (MOM19) inNeurospora mitochondria, and a 70-kilodalton protein (MAS70) in yeast. Some precursors integrate directly into the outer membrane, but the majority are translocated through one or both membranes. This process requires an electrochemical potential across the inner membrane. Import appears to occur through a hydrophilic pore, although the inner and outer membranes may contain functionally separate translocation machineries. In yeast, a 42-kilodalton protein (ISP42) probably forms part of the outer membrane channel. After import, precursors interact with chaperonin ATPases in the matrix. Presequences then are removed by the matrix protease. Finally, some proteins are retranslocated across the inner membrane to the intermembrane space.  相似文献   
52.
Summary Na+, K+ exchanges were studied in isolated hepatocytes of the rainbow trout, Salmo gairdneri. Ouabain at 10–4 M produced maximal inhibition (95%) of K+ uptake and enhanced intracellular Na+ accumulation, showing that active fluxes account for a very large proportion of Na+ and K+ exchanges. Inhibition of the Na–K pump by ouabain was significant at low concentrations (10–8 M). When external K+ concentration was reduced from 7 mM to 0.5 mM, half maximum inhibition (IC50) of K+ uptake was obtained at a 22-fold lower concentration of ouabain confirming that ouabain and potassium compete at the same pump site. Time-course analysis of [3H]ouabain binding indicated a two-component kinetics: one component saturable and dependent on K+ concentration in the medium, the other linear and independent of external K+. The ouabain binding site number, determined by Scatchard plots, remained constant (ca. 2.5·105 per cell) and independent of the external K+ concentration (7, 0.5 or 0 mM), while the dissociation constant (KD) decreased from 4.2 M to 7.3 nM when K+ was removed from the Hank's medium. These ouabain binding sites are characterized by an exceptionally low turnover rate (400 min–1), as estimated from ouabain-sensitive K+ flux, in comparison to those described in other cell types of higher vertebrates. At each external K+ concentration studied, the inhibition of K+ uptake and ouabain binding measured as a function of ouabain concentration indicated a strict correlation between the degree of K pump inhibition and the amount of bound glycoside.  相似文献   
53.
54.
Enzyme directed genetic mechanisms causing random DNA sequence alterations are ubiquitous in both eukaryotes and prokaryotes. A number of molecular geneticist have invoked adaptation through natural selection to account for this fact, however, alternative explanations have also flourished. The population geneticist G.C. Williams has dismissed the possibility of selection for mutator activity on a priori grounds. In this paper, I attempt a refutation of Williams' argument. In addition, I discuss some conceptual problems related to recent claims made by microbiologists on the adaptiveness of molecular variety generators in the evolution of prokaryotes. A distinction is proposed between selection for mutations caused by a mutator activity and selection for the mutator activity proper. The latter requires a concept of fitness different from the one commonly used in microbiology.  相似文献   
55.
The production of antimicrobial phytoalexins is one of the best-known inducible defence responses following microbial infection of plants or treatment with elicitors. In the legume soybean (Glycine max L.), 1,3-1,6--glucans derived from the fungal pathogen Phytophthora sojae have been identified as potent elicitors of the synthesis of the phytoalexin, glyceollin. Recently it has been reported that during symbiotic interaction between soybean and the nitrogen-fixing bacterium Bradyrhizobium japonicum USDA 110 the bacteria synthesize cyclic 1,3-1,6--glucans. Here we demonstrate that both the fungal and the bacterial -glucans are ligands of -glucan-binding sites which are putative receptors for the elicitor signal compounds in soybean roots. Whereas the fungal -glucans stimulate phytoalexin synthesis at low concentrations, the bacterial cyclic 1,3-1,6--glucans appear to be inactive even at relatively high concentrations. Competition studies indicate that increasing concentrations of the bacterial 1,3-1,6--glucans progressively inhibit stimulation of phytoalexin synthesis in a bioassay induced by the fungal 1,3-1,6--glucans. Another type of cyclic -glucan, a 1,2--glucan from Rhizobium meliloti, that does not nodulate on soybean, seems to be inactive as elicitor and as ligand of the -glucan-binding sites. These results may indicate a novel mechanism for a successful plant-symbiont interaction by suppressing the plant's defence response.Abbreviations HG-APEA 1-[2-(4-aminophenyl)ethyl]amino-l-[hexaglucosyl]deoxyglucitol - HG-AzPEA l-[2-(4-azidophenyl)-ethyl]amino-l-[hexaglucosyl]deoxyglucitol - IC50 concentration for half-maximal displacement We thank Ines Arlt for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 369), the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Fonds der Chemischen Industrie (J.E.), and USDA CSRS NRI Competitive Research grant 93373059233 (A.A.B.).  相似文献   
56.
我们测定了鼠肝线粒体呼吸链不同偶联部位的质子系活性并通过荧光能量共振转移 法分析了鼠肝线粒体膜与脂质体(二油酰磷脂乙醇胺/心磷脂=8/2)的膜融合程度。根据测量呼吸链第一段及第二段偶联部位的H+/偶联部位的化学计量比值,观察到线粒体呼吸链质子泵的质子(H+)泵活性及 H+泵出量与膜融合程度呈现线性的定量相关性。这些实验结果进一步支持了我们提出的质子泵诱导膜融合的理论模型(刘树森等,1987、1989)。  相似文献   
57.
DNaseⅠ超敏感位点的研究能够发现潜在的调控基因转录活化的位点,比较正常人外周血有核细胞,淋巴瘤细胞株P3HR1和人鼻咽癌低分化磷癌细胞株HOnE1和HNE2中Ha-ras-1瘤基因的DNaseⅠ超敏感位点发现,只有HONE1和HNE2细胞基因组中存在一个DNaseⅠ超敏感位点,位于第一个外显子上游0.37kb处,上述结果提示正常白细胞和P3HR1细胞中Ha-ras-1基因处于失活状态,而在鼻咽癌细胞基因组中则处于活化状态,它的活化可能与0.37kb处的DNA序列有密切的关系。  相似文献   
58.
Elementary Na+ currents were recorded at 19°C in inside-out patches from cultured neonatal rat cardiocytes. In analyzing the sensitivity of chemically modified Na+ channels to several class 1 antiarrhythmic drugs, the hypothesis was tested that removal of Na+ inactivation may be accompanied by a distinct responsiveness to these drugs, open channel blockade.Iodate-modified and trypsin-modified cardiac Na+ channels are noninactivating but strikingly differ from each other by their open state kinetics, a O1–O2 reaction (open(1) 1.4±0.3 msec; open(2) 5.4±1.1 msec; at –40 mV) in the former and a single open state (open 3.0±0.5 msec; at –40 mV) in the latter. Lidocaine (150 mol/liter) like propafenone (10 mol/liter), diprafenone (10 mol/liter) and quinidine (20 mol/liter) in cytoplasmic concentrations effective to depress NP o significantly can interact with both types of noninactivating Na+ channels to reduce the dwell time in the conducting configuration. lodate-modified Na+ channels became drug sensitive during the O2 state. At –40 mV, for example, lidocaine reduced open(2) to 62±5% of the control without detectable changes in open(1). No evidence could be obtained that these inhibitory molecules would flicker-block the open Na+ pore. Drug-induced shortening of the open state, thus, is indicative for a distinct mode of drug action, namely interference with the gating process. Lidocaine proved less effective to reduce open(2) when compared with the action of diprafenone. Both drugs apparently interacted with individual association rate constants, alidocaine was 0.64×106 mol–1 sec–1 and adiprafenone 13.6×106 mol–1 sec–1. Trypsin-modified Na+ channels also appear capable of discriminating among these antiarrhythmics, the ratio adiprafenone/alidocaine even exceeded the value in iodate-modified Na+ channels. Obviously, this antiarrhythmic drug interaction with chemically modified Na+ channels is receptor mediated: drug occupation of such a hypothetical hidden receptor that is not available in normal Na+ channels may facilitate the exit from the open state.This work was supported by a grant of the Deutsche Forschungsgemeinschaft (Ko 778/2-4), Bonn.  相似文献   
59.
The amino acid sequences of 47 P-type ATPases from several eukaryotic and bacterial kingdoms were divided into three structural segments based on individual hydropathy profiles. Each homologous segment was (1) multiply aligned and functionally evaluated, (2) statistically analyzed to determine the degrees of sequence similarity, and (3) used for the construction of parsimonious phylogenetic trees. The results show that all of the P-type ATPases analyzed comprise a single family with four major clusters correlating with their cation specificities and biological sources as follows: cluster 1: Ca2+-transporting ATPases; cluster 2: Na+- and gastric H+-ATPases; cluster 3: plasma membrane H+-translocating ATPases of plants, fungi, and lower eukaryotes; and cluster 4: all but one of the bacterial P-type ATPases (specific for K+, Cd2+, Cu2+ and an unknown cation). The one bacterial exception to this general pattern was the Mg2+-ATPase of Salmonella typhimurium, which clustered with the eukaryotic sequences. Although exceptions were noted, the similarities of the phylogenetic trees derived from the three segments analyzed led to the probability that the N-terminal segments 1 and the centrally localized segments 2 evolved from a single primordial ATPase which existed prior to the divergence of eukaryotes from prokaryotes. By contrast, the C-terminal segments 3 appear to be eukaryotic specific, are not found in similar form in any of the prokaryotic enzymes, and are not all demonstrably homologous among the eukaryotic enzymes. These C-terminal domains may therefore have either arisen after the divergence of eukaryotes from prokaryotes or exhibited more rapid sequence divergence than either segment 1 or 2, thus masking their common origin. The relative rates of evolutionary divergence for the three segments were determined to be segment 2 < segment 1 < segment 3. Correlative functional analyses of the most conserved regions of these ATPases, based on published site-specific mutagenesis data, provided preliminary evidence for their functional roles in the transport mechanism. Our studies define the structural and evolutionary relationships among the P-type ATPases. They should provide a guide for the design of future studies of structure-function relationships employing molecular genetic, biochemical, and biophysical techniques. Correspondence to: M.H. Saier, Jr.  相似文献   
60.
Abstract: We have studied the regional distribution and characteristics of polyamine-sensitive [3H]ifenprodil binding sites by quantitative autoradiography in the rat brain. In forebrain areas ifenprodil displaced [3H]ifenprodil (40 nM) in a biphasic manner with IC50 values ranging from 42 to 352 nM and 401 to 974 µM. In hindbrain regions, including the cerebellum, ifenprodil displacement curves were monophasic with IC50 values in the high micromolar range. Wiping studies using forebrain slices (containing both high- and low-affinity sites) or cerebellar slices (containing only the low-affinity site) showed that high- and low-affinity ifenprodil sites are sensitive to spermine and spermidine, to the aminoglycoside antibiotics neomycin, gentamicin, and kanamycin, and to zinc. Two calmodulin antagonists, W7 and calmidazolium, also displaced [3H]ifenprodil from both sites. Other calmodulin antagonists, including trifluoperazine, prenylamine, and chlorpromazine, selectively displaced [3H]ifenprodil from its low-affinity site in hindbrain and forebrain regions. High-affinity [3H]ifenprodil sites, defined either by ifenprodil displacement curves or by [3H]ifenprodil binding in the presence of 1 mM trifluoperazine, were concentrated in the cortex, hippocampus, striatum, and thalamus with little or no labeling of hindbrain or cerebellar regions. This distribution matches that of NMDAR2B mRNA, supporting data showing that ifenprodil has a preferential action at NMDA receptors containing this subunit. Low-affinity [3H]ifenprodil sites have a more ubiquitous distribution but are especially concentrated in the molecular layer of the cerebellum. [3H]Ifenprodil was found to bind to calmodulin-agarose with very low affinity (IC50 of ifenprodil = 516 µM). This binding was displaced by calmodulin antagonists and by polyamines, with a potency that matched their displacement of [3H]ifenprodil from its low-affinity site in brain sections. However, the localization of the low-affinity [3H]ifenprodil site does not strictly correspond to that of calmodulin, and its identity remains to be further characterized. The restricted localization of high-affinity [3H]ifenprodil binding sites to regions rich in NMDAR2B subunit mRNA may explain the atypical nature of this NMDA antagonist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号