首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   5篇
  国内免费   5篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   5篇
  2010年   6篇
  2009年   15篇
  2008年   13篇
  2007年   29篇
  2006年   15篇
  2005年   13篇
  2004年   18篇
  2003年   12篇
  2002年   4篇
  2001年   6篇
  2000年   9篇
  1999年   13篇
  1998年   18篇
  1997年   11篇
  1996年   8篇
  1995年   13篇
  1994年   9篇
  1993年   5篇
  1992年   2篇
  1991年   10篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
排序方式: 共有280条查询结果,搜索用时 31 毫秒
91.
Wu Y  Yuan H  Tan S  Chen JQ  Tian D  Yang H 《遗传学报》2011,38(7):297-305
How the structure and base composition of genes changed with the evolution of vertebrates remains a puzzling question. Here we analyzed 895 orthologous protein-coding genes in six multicellular animals: human, chicken, zebrafish, sea squirt, fruit fly, and worm. Our analyses reveal that many gene regions, particularly intron and 3' UTR, gradually expanded throughout the evolution of vertebrates from their invertebrate ancestors, and that the number of exons per gene increased. Studies based on all protein-coding genes in each genome provide consistent results.We also find that GC-content increased in many gene regions (especially 5' UTR) in the evolution of endotherms, except in coding-exons.Analysis of individual genomes shows that 3′ UTR demonstrated stronger length and CC-content correlation with intron than 5' UTR, and gene with large intron in all six species demonstrated relatively similar GC-content. Our data indicates a great increase in complexity in vertebrate genes and we propose that the requirement for morphological and functional changes is probably the driving force behind the evolution of structure and base composition complexity in multicellular animal genes.  相似文献   
92.
93.
In this paper we investigate the relationships among intron density (number of introns per kilobase of coding sequence), gene expression level, and strength of splicing signals in two species: Drosophila melanogaster and Caenorhabditis elegans. We report a negative correlation between intron density and gene expression levels, opposite to the effect previously observed in human. An increase in splice site strength has been observed in long introns in D. melanogaster. We show this is also true of C. elegans. We also examine the relationship between intron density and splice site strength. There is an increase in splice site strength as the intron structure becomes less dense. This could suggest that introns are not recognized in isolation but could function in a cooperative manner to ensure proper splicing. This effect remains if we control for the effects of alternative splicing on splice site strength. Reviewing Editor: Dr. Nicolas Galtier  相似文献   
94.
Introns were found to enhance almost every steps of gene expression except increasing mRNA stability. By analyzing the genome-wide data of mRNA stability published by someone previously, we found that human intron-containing genes have more stable mRNAs than intronless genes, and the Arabidopsis thaliana genes with the most unstable mRNAs have fewer introns than other genes in the genome. After controlling for mRNA length, we found mRNA stability is still positively correlated with intron number in human intron-containing genes. But in yeast Saccharomyces cerevisiae, two different datasets on mRNA half-life gave conflicting results. The components of messenger ribonucleoprotein particles recruited during intron splicing may be retained in cytoplasmic mRNPs and act as signals of mRNA stability or simply insulators to avoid mRNA degradation.  相似文献   
95.
96.
97.
Aspergillus tubingensis isolates collected from distant geographic areas were earlier classified into six groups on the basis of the mtDNA RFLP variability they exhibited (mtDNA types 2a-2f). In the present work, we investigated the reason for the intraspecific mtDNA variability and we describe here how this fungus, with a relatively small mitochondrial genome, can display intraspecific polymorphism due to intron acquisition and also sporadic point mutations affecting the recognition motifs of the restriction enzymes employed in the RFLP analysis. Three different LAGLI-DADG type group I introns were identified in the cox1 gene amongst the six mtDNA RFLP types. MtDNAs of types 2b and 2d contain all of the three introns, mtDNA of type 2f carries only one, and the other mtDNA types contain two introns each. Comparative analysis showed that the first and second introns of mtDNAs of types 2b and 2d are well distributed among fungi, indicating their active horizontal transfer capacity. The third intron occurs rarely among fungi and is restricted to a limited number of fungal species, namely to A. tubingensis and the yeast Candida stellata. It is interesting that this intron is present in a small mitochondrial genome such as that of A. tubingensis and, considering its rarity, its presence amongst black Aspergillus isolates is recommended to be considered as a tool to establish taxonomical unit(s) or to track down evolutionary divergence of closely related taxonomical units.  相似文献   
98.
The most abundant organic compound produced by plants is cellulose; however, it has long been accepted that most animals do not produce endogenous enzymes required for its degradation, but rely instead on symbiotic relationships with microbes that produce the necessary enzymes. Here, we present the genomic organisation of an endogenous glycosyl hydrolase family (GHF) 9 gene in redclaw crayfish (Cherax quadricarinatus), consolidated from a cDNA sequence determined by Byrne et al. [Gene 239 (1999) 317–324.]. Comparison with several other invertebrate GHF9 genes reveals the conservation of both intron position/phase and splice sequence, which adds support to an argument for an ancestral animal cellulase gene. Furthermore, two introns in plant GHF9 genes are also identical in position, implying a more ancient origin for this class of animal cellulase.

Protein purification from redclaw gastric fluid via fast performance liquid chromatography (FPLC) indicated the presence of two endoglucanase enzymes. The molecular weights of these components were determined by matrix-assisted laser desorption/ionisation—time-of-flight (MALDI-TOF) to be 47,887 Da (Cel1) and 50,295 Da (Cel2). Cel1 is possibly the functional product of the described cellulase gene, with N-terminal amino acid residues identical to the translated amino acid sequence from the corresponding gene region. Cel2 was identical to Cel1 for 7 of 11 N-terminal residues and likely to be the product of a paralogous endoglucanase gene. These results suggest that redclaw crayfish possess at least one and possibly two functional, endoglucanase enzymes, although further work is required to confirm their origin and attributes.  相似文献   

99.
对云南元江普通野生稻90个个体Wx基因区段内的重复序列(CT)n和第1内含子供体+1位碱基G/T分别进行了比较分析。结果表明云南元江普通野生稻3个居群中的90个单株在重复序列(CT)n和G/T位点纯合一致,没有多态性;其G/T位点碱基均为G;其重复序列(CT)n基因型与云南地方籼稻品种优势基因型相似但又有所区别。本研究结果为云南元江普通野生稻Wx基因利用和在稻种进化上的地位提供了信息。  相似文献   
100.
The majority of eukaryotic genes consist of exons and introns. Introns can be inserted either between codons (phase 0) or within codons, after the first nucleotide (phase 1) and after the second (phase 2). We report here that the frequency of phase 0 increases and phase 1 declines from the 5′ region to the 3′ end of genes. This trend is particularly noticeable in genomes of Homo sapiens and Arabidopsis thaliana, in which gains of novel introns in the 3′ portion of genes were probably a dominant process. Similar but more moderate gradients exist in Drosophila melanogaster and Caenorhabditis elegans genomes, where the accumulation of novel introns was not a prevailing factor. There are nine types of exons, three symmetric (0,0; 1,1; 2,2) and six asymmetric (0,1; 1,0; 1,2; 2,1; 2,0; 0,2). Assuming random distribution of different types of introns along genes, one can expect the frequencies of asymmetric exons such as 0,1 and 1,0 or 1,2 and 2,1 to be approximately equal, allowing for some variation caused by randomness. The gradient in intron distribution leads to a small but consistent and statistically significant bias: phase 1 introns are more likely at the 5′ ends and phase 0 introns are more likely at the 3′ ends of asymmetric exons. For the same reason, the frequency of 0,0 exons increases and the frequency of 1,1 exons decreases in the 3′ direction, at least in H. sapiens and A. thaliana. The number of introns per gene also affects the distribution and frequency of phase 0 and 1 introns. The gradient provides an insight into the evolution of intron-exon structures of eukaryotic genes. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Manyuan Long]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号