首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1784篇
  免费   150篇
  国内免费   82篇
  2016篇
  2024年   6篇
  2023年   40篇
  2022年   35篇
  2021年   61篇
  2020年   89篇
  2019年   114篇
  2018年   97篇
  2017年   78篇
  2016年   73篇
  2015年   64篇
  2014年   114篇
  2013年   197篇
  2012年   82篇
  2011年   96篇
  2010年   76篇
  2009年   107篇
  2008年   123篇
  2007年   100篇
  2006年   89篇
  2005年   85篇
  2004年   57篇
  2003年   34篇
  2002年   60篇
  2001年   30篇
  2000年   14篇
  1999年   13篇
  1998年   13篇
  1997年   13篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1950年   1篇
排序方式: 共有2016条查询结果,搜索用时 15 毫秒
41.
42.
Cancer is one of the major life threatening diseases, with higher mortality rate and morbidity. It is always a challenge for effective drug delivery and release of drug in specific tumor sites. Therefore to identify the synergistic effect of chemotherapeutic drug and photo thermal agent on tumor area, Doxorubicin (DOX) acts as anticancer agent but it has low aqueous solubility so its clinical application is limited. The present study developed doxorubicin (DOX) were designed to be with the poly ethylene glycol (PEG) functionalized copper and selenium (Cu-Se) nanoparticles (PEG@Cu-Se+DOX) and it is efficiently synthesized and enhance its aqueous formulation and improve the prostate cancer (DU145 and LNCaP) activity. The characteristics like mono dispersity, size stability and constant spectral of as-synthesized nanoparticles are comparably excellent than DOX alone. Also the enhanced cellular uptake and in vitro cytoxicicty suggests these nanoparticles selectively killing prostate cancer. In this present study explained that PEG@Cu-Se+DOX as a safe and hopeful strategy for chemotherapeutics of photothermal therapy and deserve for further clinical evaluations.  相似文献   
43.
44.
BACKGROUND: Polyethylenimines (PEIs) with high molecular weights are effective nonviral gene delivery vectors. However, the in vivo use of these PEIs can be hampered by their cellular toxicity. In the present study we developed and tested a new PEI polymer synthesized by linking less toxic, low molecular weight (MW) PEIs with a commonly used, biocompatible drug carrier, beta-cyclodextrin (CyD). METHODS AND RESULTS: The terminal CyD hydroxyl groups were activated by 1,1'-carbonyldiimidazole. Each activated CyD then linked two branched PEI molecules with MW of 600 Da to form a CyD-containing polymer with MW of 61 kDa, in which CyD served as a part of the backbone. The PEI-CyD polymer developed was soluble in water and biodegradable. In cell viability assays with sensitive neurons, the polymer performed similarly to low-MW PEIs and displayed much lower cellular cytotoxicity compared to PEI 25 kDa. The gene delivery efficiency of the polymer was comparable to, and at higher polymer/DNA ratios even higher than, that offered by PEI 25 kDa in neural cells. Attractively, intrathecal injection of plasmid DNA complexed by the polymer into the rat spinal cord provided levels of gene expression close to that offered by PEI 25 kDa. CONCLUSIONS: The polymer reported in the current study displayed improved biocompatibility over non-degradable PEI 25 kDa and mediated gene transfection in cultured neurons and in the central nervous system effectively. The new polymer would be worth exploring further as an in vivo delivery system of therapeutic genetic materials for gene therapy of neurological disorders.  相似文献   
45.
We synthesized a pair of compounds containing leucine zipper peptides to deliver protein cargo into cells. One is a cell-penetrating peptide (CPP) with Lz(E), a leucine zipper peptide containing negatively charged amino acids, and the other is a Nanog protein with Lz(K), a leucine zipper peptide containing positively charged amino acids. When cells were treated with these equimolar mixtures, Nanog-Lz(K) hybridized with Lz(E)-CPP was successfully delivered into the cells. Furthermore, Nanog-Lz(K) exerted its proper function after nuclear transport.  相似文献   
46.
We have developed a somatic cell gene delivery mouse model of melanoma that allows for the rapid validation of genetic alterations identified in this disease. A major advantage of this system is the ability to model the multi-step process of carcinogenesis in immune-competent mice without the generation and cross breeding of multiple strains. We have used this model to evaluate the role of RAS isoforms in melanoma initiation in the context of conditional Ink4a/Arf loss. Mice expressing the tumor virus A (TVA) receptor specifically in melanocytes under control of the dopachrome tautomerase (DCT) promoter were crossed to Ink4a/Arflox/lox mice and newborn DCT-TVA/Ink4a/Arflox/lox mice were injected with retroviruses containing activated KRAS, NRAS and/or Cre-recombinase. No mice injected with viruses containing KRAS and Cre or NRAS alone developed tumors; however, more than one-third of DCT-TVA/Ink4a/Arflox/lox mice injected with NRAS and Cre viruses developed melanoma and two-thirds developed melanoma when NRAS and Cre expression was linked.  相似文献   
47.
48.
Gene delivery to embryonic stem cells   总被引:1,自引:0,他引:1  
Since the establishment of embryonic stem (ES) cells and the identification of tissue-specific stem cells, researchers have made great strides in the analysis of the natural biology of such stem cells for the development of therapeutic applications. Specifically, ES cells are capable of differentiating into all of the cell types that constitute the whole body. Thus, ES cell research promises new type of treatments and possible cures for a variety of debilitating diseases and injuries. The potential medical benefits obtained from stem cell technology are compelling and stem cell research sees a bright future. Control of the growth and differentiation of stem cells is a critical tool in the fields of regenerative medicine, tissue engineering, drug discovery, and toxicity testing. Toward such a goal, we present here an overview of gene delivery in ES cells, covering the following topics: significance of gene delivery in ES cells, stable versus transient gene delivery, cytotoxicity, suspension versus adherent cells, expertise, time, cost, viral vectors for gene transduction (lentiviruses, adenoviruses, and adeno-associated viruses, chemical methods for gene delivery, and mechanical or physical gene delivery methods (electroporation, nucleofection, microinjection, and nuclear transfer).  相似文献   
49.
Psyllium is a medicinally important polysaccharide and its modification with methacrylamide through radiation crosslinked polymerization will develop hydrogels meant for drug delivery applications. The present paper deals with the preparation of hydrogels and their characterization by SEMs, FTIR, TGA and swelling studies. The release dynamics of model antibiotic drug rifampicin from the hydrogels has been studied for the evaluation of the release mechanism. The values of the diffusion exponent ‘n’ have been obtained (0.64, 0.58 and 0.57), respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer. The release of the drug from the hydrogels occurred through non-Fickian diffusion mechanism.  相似文献   
50.
Therapeutic treatment with hu14.18-IL-2 immunocytokine (IC) or Flt3-L (FL) protein is initially effective at resolving established intradermal NXS2 neuroblastoma tumors in mice. However, many treated animals develop recurrent disease. We previously found that tumors recurring following natural killer (NK) mediated IC treatment show augmented MHC class I expression, while the tumors that recurred following T cell dependent Flt3-L treatment exhibited decreased MHC class I expression. We hypothesized that this divergent MHC modulation on recurrent tumors was due to therapy-specific immunoediting. We further postulated that combining IC and Flt3-L treatments might decrease the likelihood of recurrent disease by preventing MHC modulation as a mechanism for immune escape. We now report that combinatorial treatment of FL plus hu14.18-IL-2 IC provides greater antitumor benefit than treatment with either alone, suppressing development of recurrent disease. We administered FL by gene therapy using a clinically relevant approach: hydrodynamic limb vein (HLV) delivery of DNA for transgene expression by myofibers. Delivery of FL DNA by HLV injection in mice resulted in systemic expression of >10 ng/ml of FL in blood at day 3, and promoted up to a fourfold and tenfold increase in splenic NK and dendritic cells (DCs), respectively. Furthermore, the combination of FL gene therapy plus suboptimal IC treatment induced a greater expansion in the absolute number of splenic NK and DCs than achieved by individual component treatments. Mice that received combined FL gene therapy plus IC exhibited complete and durable resolution of established NXS2 tumors, and demonstrated protection from subsequent rechallenge with NXS2 tumor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号