首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1372篇
  免费   121篇
  国内免费   81篇
  2024年   2篇
  2023年   38篇
  2022年   53篇
  2021年   55篇
  2020年   45篇
  2019年   89篇
  2018年   73篇
  2017年   49篇
  2016年   57篇
  2015年   48篇
  2014年   70篇
  2013年   126篇
  2012年   57篇
  2011年   72篇
  2010年   49篇
  2009年   56篇
  2008年   79篇
  2007年   72篇
  2006年   85篇
  2005年   49篇
  2004年   48篇
  2003年   35篇
  2002年   22篇
  2001年   24篇
  2000年   17篇
  1999年   18篇
  1998年   13篇
  1997年   14篇
  1996年   11篇
  1995年   22篇
  1994年   11篇
  1993年   11篇
  1992年   11篇
  1991年   8篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   2篇
  1984年   5篇
  1983年   7篇
  1982年   11篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   6篇
  1976年   2篇
  1973年   4篇
排序方式: 共有1574条查询结果,搜索用时 31 毫秒
111.
Our studies of the role of phospholipase C in inhibitory synaptic action upon visceral smooth muscles demonstrated that, under conditions of carbachol (CCh)-induced pre-activation of cholinoreceptors, ATP-or noradrenaline (NA)-evoked relaxation of these muscles is mediated by the phospholipase C-independent pathway, while the phospholipase C-dependent pathway does not manifest itself as a mechanism that determines the inhibitory effect of the above transmitters. Under conditions of pre-activation of muscarinic cholinoreceptors, ATP-and NA-induced relaxation is continued due to activation of inositol trisphosphate (InsP3)-sensitive receptors despite the fact that the pathway of inhibition is phospholipase C-independent. This is confirmed by complete depression of the inhibitory effects of ATP and NA against the background of CCh-induced contraction after pre-incubation of the studied preparations together with 100 μM 2-APB, a blocker of InsP3 receptors. Selective blockings of either M2 or M3 cholinoreceptors are accompanied by a complete loss of the ability of the above blocker of InsP3 receptors (2-APB) to suppress ATP-and NA-induced contraction of smooth muscles in the state of CCh-induced contraction. It can be hypothesized that, under conditions of selective pre-activation of M2 or M3 cholinoreceptors, the mechanisms of intracellular signalling mediating the inhibition events are modified. The InsP3-dependent pathway that determines both adrenergic and purinergic inhibition of smooth muscles is switched off, and the inhibitory action of neurotransmitters is realized under such conditions through the InsP3-independent pathway. Therefore, in our study we first found differences between cellular mechanisms underlying ATP-and NA-induced inhibition of smooth muscles under conditions of selective activation of either M2 or M3 cholinoreceptors and the mechanisms underlying the relaxing action of inhibitory neurotransmitters under conditions of combined synergistic activation of cholinoreceptors of both the above-mentioned subtypes. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 22–31, January–February, 2007.  相似文献   
112.
During the past decade, extensive progress has been made toward understanding the molecular basis for the regulation of apoptosis. In mammalian cells undergoing apoptosis, two distinct mechanisms or pathways are operated and are triggered by cell death stimuli from intra- or extra-cellular environments, namely the intrinsic or extrinsic pathways, resulting in mitochondrial membrane depolarization. Several lines of evidence from our laboratories and others have indicated that galectin-3 plays an important role in these pathways by binding to various ligands. Here the authors provide a brief discussion on the role of endogenous or extra-cellular galectin-3 in the regulation of apoptosis and how it could be used as a therapeutic target using natural plant products as its functional inhibitors.  相似文献   
113.
The localization of isoprenoid lipids in chloroplasts, the accumulation of particular isoprenoids under high irradiance conditions, and channelling of photosynthetically fixed carbon into plastidic thylakoid isoprenoids, volatile isoprenoids, and cytosolic sterols are reviewed. During leaf and chloroplast development in spring plastidic isoprenoid biosynthesis provides primarily thylakoid carotenoids, the phytyl side-chain of chlorophylls and the electron carriers phylloquinone K1, alpha-tocoquinone and alpha-tocopherol, as well as the nona-prenyl side-chain of plastoquinone-9. Under high irradiance, plants develop sun leaves and high light (HL) leaves with sun-type chloroplasts that possess, besides higher photosynthetic CO2 assimilation rates, different quantitative levels of pigments and prenylquinones as compared to shade leaves and low light (LL) leaves. After completion of chloroplast thylakoid synthesis plastidic isoprenoid biosynthesis continues at high irradiance conditions, constantly accumulating alpha-tocopherol (alpha-T) and the reduced form of plastoquinone-9 (PQ-9H2) deposited in the steadily enlarging osmiophilic plastoglobuli, the lipid reservoir of the chloroplast stroma. In sun leaves of beech (Fagus) and in 3-year-old sunlit Ficus leaves the level of alpha-T and PQ-9 can exceed that of chlorophyll b. Most plants respond to HL conditions (sun leaves, leaves suddenly lit by the sun) with a 1.4-2-fold increase of xanthophyll cycle carotenoids (violaxanthin, zeaxanthin, neoxanthin), an enhanced operation of the xanthophyll cycle and an increase of beta-carotene levels. This is documented by significantly lower values for the weight ratio chlorophylls to carotenoids (range: 3.6-4.6) as compared to shade and LL leaves (range: 4.8-7.0). Many plant leaves emit under HL and high temperature conditions at high rates the volatile compounds isoprene (broadleaf trees) or methylbutenol (American ponderosa pines), both of which are formed via the plastidic 1-deoxy-D: -xylulose-phosphate/2-C-methylerythritol 5-phosphate (DOXP/MEP) pathway. Other plants by contrast, accumulate particular mono- and diterpenes. Under adequate photosynthetic conditions the chloroplastidic DOXP/MEP isoprenoid pathway essentially contributes, with its C5 isoprenoid precusors, to cytosolic sterol biosynthesis. The possible cross-talk between the two cellular isoprenoid pathways, the acetate/MVA and the DOXP/MEP pathways, that preferentially proceeds in a plastid-to-cytosol direction, is shortly discussed.  相似文献   
114.
Increasing its root to shoot ratio is a plant strategy for restoring water homeostasis in response to the long-term imposition of mild water stress. In addition to its important role in diverse fundamental processes, indole-3-acetic acid (IAA) is involved in root growth and development. Recent extensive characterizations of the YUCCA gene family in Arabidopsis and rice have elucidated that member’s function in a tryptophan-dependent IAA biosynthetic pathway. Through forward- and reverse-genetics screening, we have isolated Tos17 and T-DNA insertional rice mutants in a CONSTITUTIVELY WILTED1 (COW1) gene, which encodes a new member of the YUCCA protein family. Homozygous plants with either a Tos17 or T-DNA-inserted allele of OsCOW1 exhibit phenotypes of rolled leaves, reduced leaf widths, and lower root to shoot ratios. These phenotypes are evident in seedlings as early as 7–10 d after germination, and remain until maturity. When oscow1 seedlings are grown under low-intensity light and high relative humidity, the rolled-leaf phenotype is greatly alleviated. For comparison, in such conditions, the transpiration rate for WT leaves decreases approx. 5- to 10-fold, implying that this mutant trait results from wilting rather than being a morphogenic defect. Furthermore, a lower turgor potential and transpiration rate in their mature leaves indicates that oscow1 plants are water-deficient, due to insufficient water uptake that possibly stems from that diminished root to shoot ratio. Thus, our observations suggest that OsCOW1-mediated IAA biosynthesis plays an important role in maintaining root to shoot ratios and, in turn, affects water homeostasis in rice.  相似文献   
115.
In this study, using cumin embryo as explant and manipulating plant growth regulators (PGRs) in regeneration medium, the main in vitro morphogenesis pathways including direct shoot organogenesis, direct somatic embryogenesis, indirect somatic embryogenesis, and indirect shoot organogenesis were obtained. The effects of PGRs, subculture, and light on the induction and progression of different pathways were studied in detail. Direct shoot organogenesis occurred on the meristematic zone, while direct somatic embryogenesis was observed on hypocotyl part of cumin embryo (more differentiated part). Application of BAP (0.1 mgl−1) was the sole triggering factor for induction of callus and indirect regeneration pathways. Exogenous IAA played the central role in the direct somatic embryogenesis pathway; however, the combined effects of IAA and NAA along with the high endogenous cytokinin level resulted in direct shoot organogenesis. Subculturing revealed accelerating effects on direct somatic embryogenesis pathway and callus formation. Conversely, subculturing had negative effect on direct shoot organogenesis pathway. In certain combinations of PGRs, like 0.4 mgl−1 IAA + 0.4 mgl−1 NAA, co-induction and co-regeneration of different pathways were observed. Investigation of genotype dependencies of different pathways showed that direct pathways are more genotype-dependent, stable, and faster than indirect pathways. This research presents the embryo of cumin as a convenient model material for induction and comparison of different morphogenesis pathways.  相似文献   
116.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   
117.
间充质干细胞具有向成骨细胞分化的潜能,可体外分离、培养和扩增,是骨组织工程中理想的种子细胞。近年的研究表明间充质干细胞的成骨分化受到多种信号通路的调控,现就其中研究较为深入的MAPK和Notch通路的情况作一简要综述。  相似文献   
118.
Metabolic pathways exhibit structures resulting from an evolutionary process. Pathways have been inherited through time with modification, from the earliest periods of life. It is possible to compare the structure of pathways as done in comparative anatomy, i.e. for inferring ancestral pathways or parts of it (ancestral enzymatic functions), using standard phylogenetic reconstruction. Thus a phylogenetic tree of pathways provides a relative ordering of the rise of enzymatic functions. It even becomes possible to order the birth of each complete pathway in time. This particular "DNA-free" conceptual approach to evolutionary biochemistry is reviewed, gathering all the justifications given for it. Then, the method of assigning a given pathway to a time span of biochemical development is revisited. The previous method used an implicit "clock" of metabolic development that is difficult to justify. We develop a new clock-free approach, using functional biochemical arguments. Results of the two methods are not significantly different; our method is just more precise. This suggests that the clock assumed in the first method does not provoke any important artefact in describing the development of biochemical evolution. It is just unnecessary to postulate it. As a result, most of the amino acid metabolic pathways develop forwards, confirming former models of amino acid catabolism evolution, but not those for amino acid anabolism. The order of appearance of sectors of universal cellular metabolism is: (1) amino acid catabolism, (2) amino acid anabolism and closure of the urea cycle, (3) glycolysis and glycogenesis, (4) closure of the pentose-phosphate cycle, (5) closure of the Krebs cycle and fatty acids metabolism, (6) closure of the Calvin cycle.  相似文献   
119.
The object of this study was to clarify the mechanism of electron transfer in the human endothelial nitric oxide synthase (eNOS) reductase domain using recombinant eNOS reductase domains; the FAD/NADPH domain containing FAD- and NADPH-binding sites and the FAD/FMN domain containing FAD/NADPH-, FMN-, and a calmodulin-binding sites. In the presence of molecular oxygen or menadione, the reduced FAD/NADPH domain is oxidized via the neutral (blue) semiquinone (FADH(*)), which has a characteristic absorption peak at 520 nm. The FAD/NADPH and FAD/FMN domains have high activity for ferricyanide, but the FAD/FMN domain has low activity for cytochrome c. In the presence or absence of calcium/calmodulin (Ca(2+)/CaM), reduction of the oxidized flavins (FAD-FMN) and air-stable semiquinone (FAD-FMNH(*)) with NADPH occurred in at least two phases in the absorbance change at 457nm. In the presence of Ca(2+)/CaM, the reduction rate of both phases was significantly increased. In contrast, an absorbance change at 596nm gradually increased in two phases, but the rate of the fast phase was decreased by approximately 50% of that in the presence of Ca(2+)/CaM. The air-stable semiquinone form was rapidly reduced by NADPH, but a significant absorbance change at 520 nm was not observed. These findings indicate that the conversion of FADH(2)-FMNH(*) to FADH(*)-FMNH(2) is unfavorable. Reduction of the FAD moiety is activated by CaM, but the formation rate of the active intermediate, FADH(*)-FMNH(2) is extremely low. These events could cause a lowering of enzyme activity in the catalytic cycle.  相似文献   
120.
Some cobalt carboxylate (both mononuclear as well as binuclear) complexes have been prepared by using hindered hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (TpiPr2) as supporting ligand. The reaction of [TpiPr2Co(NO3)] (2) with sodium benzoate resulted in the formation of acetonitrile coordinated complex [TpiPr2Co(OBz)(CH3CN)] (3) whereas the reaction of 2 with sodium fluorobenzoate gave coordinately unsaturated five coordinate complex of the type [TpiPr2Co(F-OBz)] (4). The oxidation of compound 4 in the presence of 3,5-diisopropylpyrazole resulted in the formation of a unique compound (5) where only one methine carbon of isopropyl group on pyrazole ring of hydrotris(3,5-diisopropyl-1-pyrazolyl)borate oxidized and coordinated with cobalt center. In compound 5, the binding behavior of fluorobenzoate also changes from bidentate to monodentate and the nonbonded oxygen atom formed intramolecular hydrogen bond with the hydrogen atom of the NH fragment of the coordinated . X-ray crystallography and IR studies confirmed the existence of hydrogen bonding in complex 5. The pyrazolato bridged binuclear cobalt(II) complex (6) was prepared by the reaction of hydrated cobalt(II) nitrate, 3,5-diisopropylpyrazole and sodium nitrobenzoate where, each cobalt is four coordinate. The X-ray structure of 6 showed that the NH fragment of terminally coordinated formed intramolecular hydrogen bonding with nonbonded oxygen atom of monodentately coordinated nitrobenzoate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号