首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1757篇
  免费   110篇
  国内免费   160篇
  2023年   29篇
  2022年   44篇
  2021年   44篇
  2020年   59篇
  2019年   58篇
  2018年   64篇
  2017年   53篇
  2016年   54篇
  2015年   55篇
  2014年   98篇
  2013年   145篇
  2012年   58篇
  2011年   89篇
  2010年   70篇
  2009年   100篇
  2008年   101篇
  2007年   95篇
  2006年   88篇
  2005年   78篇
  2004年   68篇
  2003年   76篇
  2002年   52篇
  2001年   51篇
  2000年   29篇
  1999年   41篇
  1998年   27篇
  1997年   18篇
  1996年   20篇
  1995年   24篇
  1994年   19篇
  1993年   28篇
  1992年   24篇
  1991年   12篇
  1990年   10篇
  1989年   10篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   18篇
  1983年   9篇
  1982年   17篇
  1981年   8篇
  1980年   13篇
  1979年   9篇
  1978年   6篇
  1977年   3篇
  1976年   8篇
  1975年   2篇
  1972年   4篇
排序方式: 共有2027条查询结果,搜索用时 312 毫秒
91.
To assess the biological safety of Fe3O4 nanoparticles (NPs), the oxidative-damage effect of these NPs was studied. Twenty-five Kunming mice were exposed to Fe3O4 NPs by intraperitoneai injection daily for 1 week at doses of 0, 10, 20, and 40 mg.kg1. Five Kunming mice were also injected with 40 mg.kg 1 ordinary Fe3O4 particles under the same physiological conditions. Biomarkers of reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) in the hepatic and brain tissues were detected. Results showed that no significant difference in oxidative damage existed at concentrations lower than 10 mg.kg i for NPs compared with the control group. Fe3O4 NP concentration had obvious dose-effect relationships (P〈 0.05 or P 〈 0.01) with ROS level, GSH content, and MDA content in mouse hepatic and brain tissues at〉20 mg.kg 1 concentrations. To some extent, ordinary Fe3O4 particles with 40mg.kg -1 concentration also affected hepatic and brain tissues in mice. The biological effect was similar to Fe3O4 NPs at 10 mg. kg-1 concentration. Thus, Fe3O4 NPs had significant damage effects on the antioxidant defense system in the hepatic and brain tissues of mice, whereas ordinary Fe3O4 had less influence than Fe3O4 NPs at the same concentration.  相似文献   
92.
A primary goal of many next‐generation bioenergy systems is to increase ecosystem services such as soil carbon (C) storage and nutrient retention. Evaluating whether bioenergy management systems are achieving these goals is challenging in part because these processes occur over long periods of time at varying spatial scales. Investigation of microbially mediated soil processes at the microbe scale may provide early insights into the mechanisms driving these long‐term ecosystem services. Furthermore, seasonal fluctuations in microbial activity are rarely considered when estimating whole ecosystem functioning, but are central to decomposition, soil structure, and realized C storage. Some studies have characterized extracellular enzyme activity within soil structures (aggregates); however, seasonal variation in decomposition at the microscale remains virtually unknown, particularly in managed ecosystems. As such, we hypothesize that temporal variation in aggregate turnover is a strong regulator of microbial activity, with important implications for decomposition and C and nitrogen (N) storage in bioenergy systems. We address variation in soil microbial extracellular enzyme activity spatially across soil aggregates and temporally across two growing seasons in three ecosystems managed for bioenergy feedstock production: Zea mays L. (corn) agroecosystem, fertilized and unfertilized reconstructed tallgrass prairie. We measured potential N‐acetyl‐glucosaminidase (NAG), β‐glucosidase (BG), β‐xylosidase (BX), and cellobiohydrolase (CB) enzyme activity. Aggregate turnover in prairie systems was driven by precipitation events and seasonal spikes in enzyme activity corresponded with aggregate turnover events. In corn monocultures, soil aggregates turned over early in the growing season, followed by increasing, albeit low, enzyme activity throughout the growing season. Independent of management system or sampling date, NAG activity was greatest in large macroaggregates (>2000 μm) and CB activity was greatest in microaggregates (<250 μm). High microbial activity coupled with greater aggregation in prairie bioenergy systems may reduce loss of soil organic matter through decomposition and increase soil C storage.  相似文献   
93.
94.
Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1?1?2?4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone.  相似文献   
95.
This paper presents a method of monocular human motion tracking for estimation of hurdle clearance kinematic parameters. The analysis involved 10 image sequences of five hurdlers at various training levels. Recording of the sequences was carried out under simulated starting conditions of a 110 m hurdle race. The parameters were estimated using the particle swarm optimization algorithm and they are based on analysis of the images recorded with a 100 Hz camera. The proposed method does not involve using any special clothes, markers, inertial sensors, etc. As the quality criteria, the mean absolute error and mean relative error were used. The level of computed errors justifies the use of this method to estimate hurdle clearance parameters.  相似文献   
96.
The aim of the study was the assessment of the ability of short peptides to form aggregates under physiological conditions. The dipeptides studied were derived from different aromatic amino acids (heteroaromatic peptides). Tripeptides were obtained from two distinct aromatic amino acids and cysteine or methionine residue in the C‐terminal, N‐terminal, or central position. The ability of the peptides to form fibrous aggregates under physiological conditions was evaluated using three independent methods: the Congo Red assay, the Thioflavin T assay, and microscopic examinations using normal and polarized light. Materials potentially useful for regenerative medicine were selected based on their cytotoxicity to the endothelial cell line EA.hy 926 and physicochemical properties of films formed by peptides. The required parameters of biocompatibility were fulfilled by H?PheCysTrp?OH, H?PheCysTyr?OH, H?PheTyrMet?OH, and H?TrpTyr?OH.  相似文献   
97.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   
98.
Dispersal allows species to shift their distributions in response to changing climate conditions. As a result, dispersal is considered a key process contributing to a species' long‐term persistence. For many passive dispersers, fluid dynamics of wind and water fuel these movements and different species have developed remarkable adaptations for utilizing this energy to reach and colonize suitable habitats. The seafaring propagules (fruits and seeds) of mangroves represent an excellent example of such passive dispersal. Mangroves are halophytic woody plants that grow in the intertidal zones along tropical and subtropical shorelines and produce hydrochorous propagules with high dispersal potential. This results in exceptionally large coastal ranges across vast expanses of ocean and allows species to shift geographically and track the conditions to which they are adapted. This is particularly relevant given the challenges presented by rapid sea‐level rise, higher frequency and intensity of storms, and changes in regional precipitation and temperature regimes. However, despite its importance, the underlying drivers of mangrove dispersal have typically been studied in isolation, and a conceptual synthesis of mangrove oceanic dispersal across spatial scales is lacking. Here, we review current knowledge on mangrove propagule dispersal across the various stages of the dispersal process. Using a general framework, we outline the mechanisms and ecological processes that are known to modulate the spatial patterns of mangrove dispersal. We show that important dispersal factors remain understudied and that adequate empirical data on the determinants of dispersal are missing for most mangrove species. This review particularly aims to provide a baseline for developing future research agendas and field campaigns, filling current knowledge gaps and increasing our understanding of the processes that shape global mangrove distributions.  相似文献   
99.
Enzyme-based catalysis has become one of the most important disciplines in organic synthesis and plays a noteworthy role in the establishment of many chemical industries, e.g. fine chemicals, food or energy, textiles, agricultural, cosmeceutical, medicinal and pharmaceutical industries. However, pristine enzymes fail to demonstrate requisite functionalities for an industrial setting where extremely specific and stable catalysts are required. Immobilization enhances the catalytic stability and activity of enzymes and trims the overall cost burden of the enzyme. Therefore, it widely endeavours for proficient, sustainable, and environmentally responsive catalytic processes. Amongst several immobilization strategies, e.g. (1) supports-assisted, i.e. physical or covalent coupling and (2) supports-free techniques, i.e. cross-linked enzyme crystals (CLECs) or aggregates are the most promising ones and widely pursued for enzyme immobilization purposes. This perspective review focuses on up-to-date developments in the area of enzyme immobilization and presents their potentialities to upgrade and/or modify enzyme properties. Both types of immobilization strategies, i.e. supports-assisted and supports-free techniques are discussed with particular reference to CLECs or aggregates and protein-coated microcrystals. Also, several useful traits achieved after immobilization are also discussed in the second half of the review.  相似文献   
100.
Short-season fallow with legumes and/or grasses can restore the soil organic C and nitrogen (N) and improve soil structure. In this study, we accessed the effects of 2-season legume and grass fallow on structural properties and C/N relationships in aggregates of a sandy loam soil. Two legumes (Calopogonium mucunoides and Centrosema pubescens), and two grasses (Guinea grass (Panicum maximum) and goose grass (Eleusine indica) were used. Results showed that Calopogonium and Centrosema increased soil total porosity and reduced soil bulk densities, while goose grass increased bulk density and reduced total porosity of the soils at 0–15 and 15–30?cm depths. Guinea grass significantly increased the saturated hydraulic conductivity (50.4?cm?h?1) and water holding capacity of the soils. Aggregates, 4.75 to 0.5?mm were greater in Guinea grass and least in goose grass fallowed soils. Calopogonium increased macro-aggregates at 0–15?cm soils by 48%, and mean weight diameter (MWD) by 44%. Organic carbon in 0.5–0.25?mm and <0.25?mm aggregate sizes was higher in Guinea grass soils. Generally, grasses had 4-fold increases of C:N contents in dry aggregates. In conclusion, short-season fallow with Guinea grass, Calopogonium and Centrosema, increased soil C and N and protected them from losses in stable aggregates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号