首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7797篇
  免费   892篇
  国内免费   465篇
  2024年   34篇
  2023年   109篇
  2022年   138篇
  2021年   189篇
  2020年   305篇
  2019年   350篇
  2018年   393篇
  2017年   310篇
  2016年   338篇
  2015年   378篇
  2014年   518篇
  2013年   616篇
  2012年   338篇
  2011年   476篇
  2010年   392篇
  2009年   336篇
  2008年   363篇
  2007年   355篇
  2006年   340篇
  2005年   320篇
  2004年   243篇
  2003年   249篇
  2002年   228篇
  2001年   162篇
  2000年   139篇
  1999年   118篇
  1998年   148篇
  1997年   119篇
  1996年   98篇
  1995年   116篇
  1994年   109篇
  1993年   75篇
  1992年   78篇
  1991年   72篇
  1990年   57篇
  1989年   80篇
  1988年   50篇
  1987年   40篇
  1986年   40篇
  1985年   63篇
  1984年   54篇
  1983年   31篇
  1982年   37篇
  1981年   25篇
  1980年   36篇
  1979年   24篇
  1978年   11篇
  1977年   16篇
  1976年   13篇
  1975年   9篇
排序方式: 共有9154条查询结果,搜索用时 15 毫秒
201.
Additives are widely adopted for efficient, stable, and hysteresis‐free perovskite solar cells and play an important role in various breakthroughs of perovskite solar cells (PSCs). Herein the various additives adopted for PSCs are reviewed and their functioning mechanism and influence on device performance is described. The main roles of additives, modulating morphology of perovskite films, stabilizing phase of formamidinium (FA) and cesium (Cs)‐based perovskites, adjusting energy level alignment in PSCs, suppressing nonradiative recombination in perovskites, eliminating hysteresis, enhancing operational stability of PSCs, are summarized.  相似文献   
202.
203.
204.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
205.
Organic field‐effect transistors (OFETs) are the basic elements of organic circuits towards flexible, printable, and wearable electronics. Low‐energy‐consumption OFETs with high mobility are the prerequisite for practical applications. After 30 years of development, OFETs have progressed rapidly, from field‐effect materials to devices, and from individual device to small‐ and medium‐scale integration. Here, a brief retrospective of OFETs' development over the past decades, and the emerging opportunities and challenges from device physics, multifunctional materials to integrated application are presented.  相似文献   
206.
Wind is one of the most important sources of green energy, but the current technology for harvesting wind energy is only effective when the wind speed is beyond 3.5–4.0 m s?1. This is mainly due to the limitation that the electromagnetic generator works best at high frequency. This means that light breezes cannot reach the wind velocity threshold of current wind turbines. Here, a high‐performance triboelectric nanogenerator (TENG) for efficiently harvesting energy from an ambient gentle wind, especially for speeds below 3 m s?1 is reported, by taking advantage of the relative high efficiency of TENGs at low‐frequency. Attributed to the multiplied‐frequency vibration of ultra‐stretchable and perforated electrodes, an average output of 20 mW m?3 can be achieved with inlet wind speed of 0.7 m s?1, while an average energy conversion efficiency of 7.8% at wind speed of 2.5 m s?1 is reached. A self‐charging power package is developed and the applicability of the TENG in various light breezes is demonstrated. This work demonstrates the advantages of TENG technology for breeze energy exploitation and proposes an effective supplementary approach for current employed wind turbines and micro energy structure.  相似文献   
207.
Ocean wave energy is a promising renewable energy source, but harvesting such irregular, “random,” and mostly ultra‐low frequency energies is rather challenging due to technological limitations. Triboelectric nanogenerators (TENGs) provide a potential efficient technology for scavenging ocean wave energy. Here, a robust swing‐structured triboelectric nanogenerator (SS‐TENG) with high energy conversion efficiency for ultra‐low frequency water wave energy harvesting is reported. The swing structure inside the cylindrical TENG greatly elongates its operation time, accompanied with multiplied output frequency. The design of the air gap and flexible dielectric brushes enable mininized frictional resistance and sustainable triboelectric charges, leading to enhanced robustness and durability. The TENG performance is controlled by external triggering conditions, with a long swing time of 88 s and a high energy conversion efficiency, as well as undiminished performance after continuous triggering for 4 00 000 cycles. Furthermore, the SS‐TENG is demonstrated to effectively harvest water wave energy. Portable electronic devices are successfully powered for self‐powered sensing and environment monitoring. Due to the excellent performance of the distinctive mechanism and structure, the SS‐TENG in this work provides a good candidate for harvesting blue energy on a large scale.  相似文献   
208.
209.
Perovskite solar cells (PSC) have shown that under laboratory conditions they can compete with established photovoltaic technologies. However, controlled laboratory measurements usually performed do not fully resemble operational conditions and field testing outdoors, with day‐night cycles, changing irradiance and temperature. In this contribution, the performance of PSCs in the rooftop field test, exposed to real weather conditions is evaluated. The 1 cm2 single‐junction devices, with an initial average power conversion efficiency of 18.5% are tracked outdoors in maximum power point over several weeks. In parallel, irradiance and air temperature are recorded, allowing us to correlate outside factors with generated power. To get more insight into outdoor device performance, a comprehensive set of laboratory measurements under different light intensities (10% to 120% of AM1.5) and temperatures is performed. From these results, a low power temperature coefficient of ?0.17% K?1 is extracted in the temperature range between 25 and 85 °C. By incorporating these temperature‐ and light‐dependent PV parameters into the energy yield model, it is possible to correctly predict the generated energy of the devices, thus validating the energy yield model. In addition, degradation of the tested devices can be tracked precisely from the difference between measured and modelled power.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号