首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20399篇
  免费   964篇
  国内免费   647篇
  22010篇
  2024年   20篇
  2023年   179篇
  2022年   340篇
  2021年   357篇
  2020年   429篇
  2019年   647篇
  2018年   693篇
  2017年   356篇
  2016年   420篇
  2015年   601篇
  2014年   1155篇
  2013年   1363篇
  2012年   802篇
  2011年   1288篇
  2010年   910篇
  2009年   996篇
  2008年   1051篇
  2007年   1165篇
  2006年   1061篇
  2005年   999篇
  2004年   799篇
  2003年   758篇
  2002年   626篇
  2001年   467篇
  2000年   396篇
  1999年   409篇
  1998年   466篇
  1997年   342篇
  1996年   328篇
  1995年   323篇
  1994年   278篇
  1993年   215篇
  1992年   196篇
  1991年   159篇
  1990年   143篇
  1989年   123篇
  1988年   110篇
  1987年   100篇
  1986年   62篇
  1985年   122篇
  1984年   170篇
  1983年   119篇
  1982年   102篇
  1981年   73篇
  1980年   67篇
  1979年   64篇
  1978年   36篇
  1977年   32篇
  1976年   25篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Inhibition of protein kinase C (PKC) by calmodulin is investigated and we describe the localization of inhibitory sequences within the calmodulin molecule. We present evidence that calmodulin inhibits PKC through an inhibition of the activation of PKC associated with lipid membranes: Binding of PKC to lipid vesicles is not affected, but activation is abolished. The potent calmodulin antagonist R24571 (calmidazol) did not affect the inhibition of PKC by calmodulin at concentrations up to 10–5 M. Two tryptic fragments of calmodulin were isolated which inhibited PKC. They were only slightly less potent than intact calmodulin with an IC50 of 6 µ M compared to 1 µ M of intact calmodulin. They were identified as Ser38-Arg74 and His107-Lys148. Each of the inhibiting fragments contains an intact Ca2+-binding domain with complete helix-loop-helix structure (EF hand). Other calmodulin peptides showed only weak inhibitory activity. Both fragments did not stimulate cAMP phosphodiesterase even at concentrations 100-fold higher than the calmodulin concentration needed for maximal stimulation. None of the fragments acted as a calmodulin antagonist.  相似文献   
42.
The urinary bladder depends on intracellular ATP for the support of a number of essential intracellular processes including contraction. The concentration of ATP is maintained constant primarily via the rapid transfer of a phosphate from creatine phosphate (CP) to ADP catalyzed by the enzyme creatine kinase (CK). Since muscular pathologies associated with diabetes are in part related to intracellular alterations in metabolism, we have characterized the CK activity in both skeletal muscle and urinary bladder from control and streptozotocin-diabetic rats.The following is a summary of the results: 1) Bladder tissue from control rats showed linear kinetics with a Vmax = 390 nmoles/mg protein/min, and a Km = 275 µM. 2) Urinary bladder tissue isolated from diabetic rats displayed biphasic kinetics with Vmax = 65 and 324 nmoles/mg protein/min, and Km's = 10 µM and 190 µM respectively. 3) Skeletal muscle isolated from control rats showed linear kinetics with an approximate Vmax of 800 nmoles/mg protein/min and a Km of 280 µM CP. 4) Homogenates of skeletal muscle from diabetic rats showed complex kinetics not separable into distict component forms. 5) The Km for ADP for both skeletal muscle and bladder was approximately 10 µM.These studies demonstrate that whereas bladders isolated from both control and diabetic rats possess a low-affinity isomer(s) of CK with similar maximum enzymatic activity, there is a high affinity isomer present within the urinary bladder muscle of diabetic rats that is not present in bladder tissue isolated from control rats. Skeletal muscle isolated from both diabetic and control rats exhibited a maximal activity 2 to 3 times higher than that of the bladder.  相似文献   
43.
The Drosophila PROS-28.1 gene is a member of the proteasome gene family   总被引:4,自引:0,他引:4  
In the present communication, we report the identification of a new gene family which encodes the protein subunits of the proteasome. The proteasome is a high-Mr complex possessing proteolytic activity. Screening a Drosophila λgt11 cDNA expression library with the proteasome-specific antibody N19-28 we isolated a clone encoding the 28-kDa No. 1 proteasome protein subunit. In accordance with the nomenclature of proteasome subunits in Drosophila, the corresponding gene is designated PROS-28.1, and it encodes an mRNA of 1.1 kb with an open reading frame of 249 amino acids (aa). Genomic Southern-blot hybridization shows PROS-28.1 to be a member of a family of related genes. Analysis of the predicted aa sequence reveals a potential nuclear targeting signal, a potential site for tyrosine kinase and a potential cAMP/cGMP-dependent phosphorylation site. The aa sequence comparison of the products of PROS-28.1 and PROS-35 with the C2 proteasome subunit of rat shows a strong sequence similarity between the different proteasome subunits. The data suggest that at least a subset of the proteasome-encoding genes belongs to a family of related genes (PROS gene family) which may have evolved from a common ancestral PROS gene.  相似文献   
44.
Protein phosphorylation in Streptomyces albus   总被引:1,自引:0,他引:1  
The phosphorylated proteins of Streptomyces albus, radioactively labeled with [32P]orthophosphate have been analyzed by gel electrophoresis and autoradiography. More than 10 protein species were found to be phosphorylated. With [32P]ATP as substrate cell free extracts phosphorylated endogenous proteins in vitro which were predominantly phosphorylated in vivo. From cell extract which exhibited active phosphorylated in vitro, a protein kinase has been partially purified. The kinase activity was identified in fractions corresponding to a 90 kDa protein.  相似文献   
45.
Exposure of fibroblasts derived from keloid tissues, desmoid and dermal tissue from individuals with Gardner's syndrome (GS) to dexamethasone resulted in the suppression of protein kinase C (PKC) activity and [3H]thymidine incorporation into DNA, and a 20-fold induction of glutamine synthetase activity. Treatment of GS and keloid fibroblasts with 0.1 microM dexamethasone for 36 h increased glucocorticoid receptor (GR) synthesis, as determined by [35S]methionine labeling and immunoprecipitation with a monoclonal antibody to the human GR. The suppression of PKC activity by dexamethasone was shown to result from a loss of protein mass as determined by immunoblotting using an antibody to PKC type III. In contrast to these results, exposure of fibroblasts isolated from normal tissues to dexamethasone did not result in the suppression PKC and [3H]thymidine incorporation, there was only a sixfold induction of glutamine synthetase, and a decrease of GR synthesis. As no primary receptor binding defect could be detected, the altered response of tumor cells to steroid-occupied receptor indicates a partial post-receptor binding defect in GS and keloid cells.  相似文献   
46.
We have isolated a revertant cell line (G5) from an adenovirus transformed rat cell line (F4) which failed to express the integrated viral oncogenes. To determine whether the reversion mutation was acting in cis or trans the G5 cells were co-transfected with an E1 gene bearing expression plasmid and a neomycin phosphotransferase bearing plasmid. G418-resistant colonies were picked and shown to express the E1 proteins and to be tumorigenic. This re-transformation could be partially mimicked by treatment with vanadate, an inhibitor of phosphotyrosine phosphatases. These results show that the continued presence of the E1 proteins was required to maintain the transformed phenotype, and that the reversion mutation was a cis-acting event affecting directly the integrated E1 genes.  相似文献   
47.
-We have previously shown that NAD kinase and NADP phosphatase activities display circadian rhythms, in the soluble (SN) and membrane-bound (P) fractions of crude extracts of the achlorophyllous ZC mutant of the phytoflagellate Euglena gracilis (which displays circadian rhythmicity of cell division). We determined if changes in the affinity of NADP phosphatase and NAD kinase for their substrates, NADP+ and NAD+, were occurring by calculating the ratios 100(velocity found in Km conditions/velocity found in saturating conditions). The rationale was that if the affinity remained unchanged according to circadian time (CI), these values should always equal 50, independently of any changes in enzyme quantity; values greater than 50 should indicate increases in enzyme affinity, and values less than 50 decreases in affinity. Our results indicated that these values calculated for NADP phosphatase exhibited a complex pattern of rhythmicity, while those for NAD kinase displayed circadian variations strongly correlated with the rhythms in enzyme activity. The curves showed troughs at CT 00-04 both in dividing and nondividing cells and peaks at CT 18-20 or at CT 08-14 in cells sampled, respectively, from a dividing or a stationary culture. Such variations are indicative of changes in the kinetic properties of the enzyme, which may reflect modifications in its affinity either for effectors (such as Ca2+-calmodulin) or for its substrate, NAD+. This may be due to (i) the expression of different isoenzymes at different CTs; (ii) different posttranslational modifications of the enzyme; or (iii) concentrations of effectors varying in a circadian manner.  相似文献   
48.
Summary Arginine kinase (AK) is present throughout the life cycle of Drosophila melanogaster, but there is a sharp, transient peak of AK activity during the prepupal period and a second period of elevated activity at the time of eclosion of the adult. Imaginal discs show the greatest increase in AK activity at the prepupal stage of those tissues assayed. The prepupal peak is not seen when the temperature-sensitive ecdysoneless mutant ecd-1 is shifted to 29° C at mid-third instar larval stage. The peak in activity reappears when ecd-1 is either shifted back to 20° C after 60 h at 29° C or is fed 20-hydroxyecdysone. At the restrictive temperature, imaginal discs from ecd-1 larvae progressively lose AK activity, whereas discs from 20-hydroxyecdysone-fed larvae have a marked increase in AK activity at stage P3 of the prepupal period. These data suggest that the prepupal peak is regulated by the hormone 20-hydroxyecdysone.  相似文献   
49.
Summary Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3,5-monophosphate (cAMP)-dependent and by calcium · calmodulin-dependent protein kinases on a 27 000 proteolipid, called phospholamban. Both types of phosphorylation are associated with an increase in the initial rates of Ca2+ transport by SR vesicles which reflects an increased turnover of elementary steps of the calcium ATPase reaction sequence. The stimulatory effects of the protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase, which can dephosphorylate both the CAMP-dependent and the calcium · calmodulin-dependent sites on phospholamban. Thus, the calcium pump in cardiac sarcoplasmic reticulum appears to be under reversible regulation mediated by protein kinases and protein phosphatases.  相似文献   
50.
We have studied the mechanisms of breakdown of 2'-5' oligoadenylates. We monitored the time-courses of degradation of ppp(A2'p5')nA (dimer to tetramer) and of 5'OH-(A2'p5')nA (dimer to pentamer) in unfractionated L1210 cell extract. The 5' triphosphorylated 2'-5' oligoadenylates are converted by a phosphatase activity. However, 2'-5' oligoadenylates are degraded mainly by phosphodiesterase activity which splits the 2'-5' phosphodiester bond sequentially at the 2' end to yield 5' AMP and one-unit-shorter oligomers. The nonlinear least-squares curve-fitting program CONSAM was used to fit these kinetics and to determine the degradation rate constant of each oligomer. Trimers and tetramers, whether 5' triphosphorylated or not, are degraded at the same rate, whereas 5' triphosphorylated dimer is rapidly hydrolyzed and 5'-OH dimer is the most stable oligomer. The interaction between degradation enzymes and the substrate strongly depends on the presence of a 5' phosphate group in the vicinity of the phosphodiester bond to be hydrolyzed; indeed, when this 5' phosphate group is present, as in pp/pA2'p5'A/or A2'/p5'A2'p5'A/, affinity is high and maximal velocity is low. Such a degradation pattern can control the concentration of 2'-5' oligoadenylates active on RNAse L either by limiting their synthesis (5' triphosphorylated dimer is the primer necessary for the formation of longer oligomers) and/or by converting them into inhibitory (e.g., monophosphorylated trimer) or inactive (e.g., nonphosphorylated oligomers) molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号