首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13691篇
  免费   1235篇
  国内免费   734篇
  2024年   43篇
  2023年   351篇
  2022年   463篇
  2021年   763篇
  2020年   783篇
  2019年   1026篇
  2018年   756篇
  2017年   458篇
  2016年   531篇
  2015年   678篇
  2014年   938篇
  2013年   1123篇
  2012年   663篇
  2011年   803篇
  2010年   543篇
  2009年   646篇
  2008年   635篇
  2007年   624篇
  2006年   568篇
  2005年   492篇
  2004年   433篇
  2003年   400篇
  2002年   322篇
  2001年   168篇
  2000年   149篇
  1999年   138篇
  1998年   118篇
  1997年   91篇
  1996年   95篇
  1995年   81篇
  1994年   64篇
  1993年   70篇
  1992年   59篇
  1991年   47篇
  1990年   41篇
  1989年   33篇
  1988年   38篇
  1987年   34篇
  1986年   41篇
  1985年   43篇
  1984年   70篇
  1983年   41篇
  1982年   54篇
  1981年   35篇
  1980年   29篇
  1979年   21篇
  1978年   13篇
  1977年   12篇
  1976年   9篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
We explore in this paper the role of genetic variants that affect cell size and proliferation in the determination of organ size. We use genetic mosaics of loss or gain of function in six different loci, which promotes smaller or larger than normal cells, associated to either smaller or larger than normal territories. These variants have autonomous effects on patterning and growth in mutant territories. However, there is no correlation between cell size or rate of proliferation on the size of the mutant territory. In addition, these mosaics show non-autonomous effects on surrounding wildtype cells, consisting always in a reduction in number of non-mutant cells. In all mutant conditions the final size (and shape) of the wing is different than normal. The phenotypes of the same variants include higher density of chaetae in the notum. These autonomous and non-autonomous effects suggest that the control of size in the wing is the result of local cell communication defining canonic distances between cells in a positional-values landscape.  相似文献   
953.
The Ras protein activates at least three different pathways during early development. Two of them regulate mesodermal gene expression and the third is thought to participate in the control of actin cytoskeleton dynamics via the Ral protein. From a yeast two-hybrid screen of a Xenopus maternal cDNA library, we identified the Xenopus orthologue of the Ral interacting protein (RLIP, RIP1 or RalBP1), a putative effector of small G protein Ral. Previously, we observed that a constitutively activated form of Ral GTPase (XralB G23V) induced bleaching of the animal hemisphere and disruption of the cortical actin cytoskeleton. To demonstrate that RLIP is the effector of RalB in early development, we show that the artificial targeting of RLIP to the membrane induces a similar phenotype to that of activated RalB. We show that overexpression of the Ral binding domain (RalBD) of XRLIP, which binds to the effector site of Ral, acts in competition with the endogenous effector of Ral and protects against the destructive effect of XralB G23V on the actin cytoskeleton. In contrast, the XRLIP has a synergistic effect on the activated form of XralB, which is dependent on the RalBD of RLIP. We provide evidence for the involvement of RLIP by way of its RalBD on the dynamics of the actin cytoskeleton and propose that signalling from Ral to RLIP is required for gastrulation.  相似文献   
954.
Fibroblasts form a body-wide cellular network   总被引:2,自引:2,他引:0  
Loose connective tissue forms a network extending throughout the body including subcutaneous and interstitial connective tissues. The existence of a cellular network of fibroblasts within loose connective tissue may have considerable significance as it may support yet unknown body-wide cellular signaling systems. We used a combination of histochemistry, immunohistochemistry, confocal scanning laser microscopy (confocal microscopy), and electron microscopy to investigate the extent and nature of cell-to-cell connections within mouse subcutaneous connective tissue. We found that fibroblasts formed a reticular web throughout the tissue. With confocal microscopy, 30% of fibroblasts processes could be followed continuously from one cell to another. Connexin 43 immunoreactivity was present at apparent points of cell-to-cell contact. Electron microscopy revealed that processes from adjacent cells were in close apposition to one another, but gap junctions were not observed. Our findings indicate that soft tissue fibroblasts form an extensively interconnected cellular network, suggesting they may have important and so far unsuspected integrative functions at the level of the whole body.  相似文献   
955.
956.
The effects of central (intracerebroventricular, 9 g fish–1) and peripheral (intraperitoneal, 4 mg kg–1) administration of bovine insulin, as well as the effect of hyperglycemia (oral administration of 1 g glucose fish–1) and brain glucodeprivation (intracerebroventricular administration of 2-deoxy-D-glucose) on food intake and levels of brain (telencephalon, preoptic area, and hypothalamus) biogenic amines (serotonin, dopamine, noradrenaline and their metabolites 5-hydroxyindoleacetic acid, and dihydroxyphenylacetic acid) were assessed on rainbow trout (Oncorhynchus mykiss). Treatment with insulin inhibited food intake after 26 or 52 h of administration, central or peripheral, respectively. This effect was still apparent after 74 h of central treatment. When assessing changes in the levels of biogenic amines after 26 h of central insulin administration, there was a significant increase in the levels of 5-hydroxyindoleacetic acid, and in the ratio of dihydroxyphenylacetic acid/dopamine of insulin-treated fish, in telencephalon and hypothalamus, respectively. These results suggest that peripherally administered insulin is involved in a feedback regulatory loop with food intake and body weight. Moreover, at least part of the effects of insulin could be mediated by hypothalamic dopaminergic activity. The strong hyperglycemia induced by oral administration of glucose did not induce significant changes either on food intake (control versus treated), or in brain levels of biogenic amines. The intracerebroventricular administration of 2-deoxy-D-glucose induced an increase in food intake without altering plasma glucose levels, suggesting that fish brain possesses a control system for detecting hypoglycemia in plasma and therefore keep brain glucose levels high enough for brain function.Abbreviations 2-DG 2 Deoxy-D-glucose - 5-HIAA 5-Hydroxyindoleacetic acid - 5-HT 5-Hydroxytryptamine or serotonin - DA Dopamine - DOPAC Dihydroxyphenylacetic acid - EDTA Ethylenediaminetetraacetic acid - FI Food intake - HPLC High pressure liquid chromatography - icv Intracerebroventricular - i.p. Intraperitoneal - MS 222 3-Aminobenzoic acid ethyl esther methanesulfonate salt - NA Noradrenaline  相似文献   
957.
Chan PH 《Neurochemical research》2004,29(11):1943-1949
Apoptotic cell death pathways have been implicated in acute brain injuries, including cerebral ischemia, brain trauma, and spinal cord injury, and in chronic neurodegenerative diseases. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and suggest the involvement of mitochondria and the cell survival/death signaling pathways in cell death/survival cascades. Recent studies have implicated mitochondria-dependent apoptosis involving pro- and anti-apoptotic protein binding, the release of cytochrome c and second mitochondria-derived activator of caspase, the activation of downstream caspases-9 and –3, and DNA fragmentation. Reactive oxygen species are known to be significantly generated in the mitochondrial electron transport chain in the dysfunctional mitochondria during reperfusion after ischemia, and are also implicated in the survival signaling pathway that involves phosphatidylinositol-3-kinase (PI3-K), Akt, and downstream signaling molecules, like Bad, 14-3-3, and the proline-rich Akt substrate (PRAS), and their bindings. Further studies of these survival pathways may provide novel therapeutic strategies for clinical stroke.Special issue dedicated to Lawrence F. Eng.  相似文献   
958.
Dehydrated toads absorb water by pressing a specialized (seat patch) area of the skin to moist surfaces. This behavior, the water absorption response (WR), is preceded by periods of more limited skin contact (seat patch down, SPD) in which the suitability of the rehydration source is evaluated. WR and SPD behaviors were suppressed on 250 mM NaCl and 200 mM KCl solutions. Ten micromolar amiloride partially restored SPD and WR on NaCl solutions. The addition of 5 mM La(3+) also partially restored the initiation of WR and this effect was additive to the effect of amiloride, suggesting transcellular and paracellular pathways exist in parallel. Similarly, 5 mM La(3+) partially restored the initiation of WR on KCl solutions, to levels comparable to those with K(+)gluconate, suggesting a paracellular pathway for detection of K(+). Hyperosmotic (250 mM) NaCl solutions bathing the mucosal surface rapidly and reversibly increased the paracellular conductance of isolated skin and this increase was partially inhibited by 5 mM La(3+). These results suggest that the regulation of tight junctions has a chemosensory role in toad skin.  相似文献   
959.
Narváez-Vásquez J  Ryan CA 《Planta》2004,218(3):360-369
The systemin precursor, prosystemin, has been previously shown to be sequestered in vascular bundles of tomato (Lycopersicon esculentum Mill.) plants, but its subcellular compartmentalization and association with a specific cell type has not been established. We present in situ hybridization and immunocytochemical evidence at the light, confocal, and transmission electron microscopy levels that wound-induced and methyl jasmonate-induced prosystemin mRNA and protein are exclusively found in vascular phloem parenchyma cells of minor veins and midribs of leaves, and in the bicollateral phloem bundles of petioles and stems of tomato. Prosystemin protein was also found constitutively in parenchyma cells of various floral organs, including sepals, petals and anthers. At the subcellular level, prosystemin was found compartmentalized in the cytosol and the nucleus of vascular parenchyma cells. The cumulative data indicate that vascular phloem parenchyma cells are the sites for the synthesis and processing of prosystemin as a first line of defense signaling in response to herbivore and pathogen attacks.Abbreviations IgG immunoglobulin - TEM transmission electron microscope  相似文献   
960.
Rose A  Patel S  Meier I 《Planta》2004,218(3):327-336
This review summarizes our present knowledge about the composition and function of the plant nuclear envelope. Compared with animals or yeast, our molecular understanding of the nuclear envelope in higher plants is in its infancy. However, fundamental differences in the structure and function of the plant and animal nuclear envelope have already been found. Here, we compare and contrast these differences with respect to nuclear pore complexes, targeting of Ran signaling to the nuclear envelope, inner nuclear envelope proteins, and the role and fate of the nuclear envelope during mitosis. Further investigation of the emerging fundamental differences as well as the similarities between kingdoms might illuminate why there appears to be more than one blueprint for building a nucleus.Abbreviations GFP Green fluorescent protein - INE Inner nuclear envelope - LAP Lamina-associated polypeptide - LBR Lamin B receptor - MTOC Microtubule-organizing center - NE Nuclear envelope - NPC Nuclear pore complex - ONE Outer nuclear envelope - RanBP Ran-binding protein - RanGAP Ran GTPase-activating protein - WPP domain Tryptophan–proline–proline domain  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号