首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2287篇
  免费   49篇
  国内免费   172篇
  2023年   17篇
  2022年   25篇
  2021年   36篇
  2020年   34篇
  2019年   33篇
  2018年   35篇
  2017年   46篇
  2016年   62篇
  2015年   64篇
  2014年   69篇
  2013年   74篇
  2012年   52篇
  2011年   124篇
  2010年   83篇
  2009年   106篇
  2008年   133篇
  2007年   126篇
  2006年   105篇
  2005年   110篇
  2004年   106篇
  2003年   86篇
  2002年   61篇
  2001年   42篇
  2000年   70篇
  1999年   51篇
  1998年   72篇
  1997年   53篇
  1996年   57篇
  1995年   53篇
  1994年   38篇
  1993年   44篇
  1992年   37篇
  1991年   41篇
  1990年   26篇
  1989年   29篇
  1988年   26篇
  1987年   28篇
  1986年   17篇
  1985年   28篇
  1984年   18篇
  1983年   24篇
  1982年   14篇
  1981年   19篇
  1980年   18篇
  1979年   20篇
  1978年   22篇
  1977年   17篇
  1976年   15篇
  1973年   7篇
  1972年   7篇
排序方式: 共有2508条查询结果,搜索用时 33 毫秒
91.
The distribution and morphology of crustacean cardioactive peptide-immunoreactive neurons in the brain of the locust Locusta migratoria has been determined. Of more than 500 immunoreactive neurons in total, about 380 are interneurons in the optic lobes. These neurons invade several layers of the medulla and distal parts of the lobula. In addition, a small group of neurons projects into the accessory medulla, the lamina, and to several areas in the median protocerebrum. In the midbrain, 12 groups or individual neurons have been reconstructed. Four groups innervate areas of the superior lateral and ventral lateral protocerebrum and the lateral horn. Two cell groups have bilateral arborizations anterior and posterior to the central body or in the superior median protocerebrum. Ramifications in subunits of the central body and in the lateral and the median accessory lobes arise from four additional cell groups. Two local interneurons innervate the antennal lobe. A tritocerebral cell projects contralaterally into the frontal ganglion and appears to give rise to fibers in the recurrent nerve, and in the hypocerebral and ingluvial ganglia. Varicose fibers in the nervi corporis cardiaci III and the corpora cardiaca, and terminals on pharyngeal dilator muscles arise from two subesophageal neurons. Some of the locust neurons closely resemble immunopositive neurons in a beetle and a moth. Our results suggest that the peptide may be (1) a modulatory substance produced by many brain interneurons, and (2) a neurohormone released from subesophageal neurosecretory cells.  相似文献   
92.
SchistoFLRFamide (PDVDHVFLRF-NH2) is one of the major endogenous neuropeptides of the FMRF-amide family found in the nervous system of the locust,Schistocerca gregaria. To gain insights into the potential physiological roles of this neuropeptide we have examined the distribution of SchistoFLRFamide-like immunoreactivity in the ventral nervous system of adult locusts by use of a newly developed N-terminally specific antibody. SchistoFLRFamide-like immunoreactivity in the ventral nerve cord is found in a subgroup of the neurones that are immunoreactive to an antiserum raised against bovine pancreatic polypeptide (BPP). In the suboesophageal ganglion three groups of cells stain, including one pair of large posterior ventral cells. These cells are the same size, in the same location in the ganglion and have the same branching pattern as a pair of BPP immunoreactive cells known to innervate the heart and retrocerebral glandular complex of the locust. In the thoracic and abdominal ganglia two and three sets of cells, respectively, stain with both the SchistoFLRFamide and BPP antisera. In the abdominal ganglia the immunoreactive cells project via the median nerves to the intensely immunoreactive neurohaemal organs.  相似文献   
93.
The membrane potential of ventral longitudinal muscles of Tenebrio molitor larvae was studied as a function of time and of cesium substituted for all or part of external potassium. The conventional microelectrode technique was applied. The mean value of resting potential was — 47.4 mV in standard physiological saline which did not change significantly with time (90 min). Cesium caused, almost immediately, a significant hyperpolarization of membrane potential the magnitude of which depended on cesium concentration. The presence of external potassium enhanced the effectiveness of cesium action, resulting in more pronounced hyperpolarization. The effect of Cs ions was fully reversible upon washing. These data support the idea that inward potassium current can be activated at resting potential level, at least in some cells, including the muscles studied. It is presumed that this potassium current might have some contribution to the resting membrane potential generation in mealworm larva muscles.Abbreviations [K +]0 extracellular concentration of K ions - E m resting membrane potential of a cell when bathed in normal saline - E K K + equilibrium potential - MP membrane potential - RP resting potential - SD standard deviation - SEM standard error of the mean  相似文献   
94.
Regulation of neuropeptide expression in the brain by neurotrophins   总被引:3,自引:0,他引:3  
Neurotrophins, which are structurally related to nerve growth factor, have been shown to promote survival of various neurons. Recently, we found a novel activity of a neurotrophin in the brain: Brain-derived neurotrophic factor (BDNF) enhances expression of various neuropeptides. The neuropeptide differentiation activity was then compared among neurotrophins both in vivo and in vitro. In cultured neocortical neurons, BDNF and neurotrophin-5 (NT-5) remarkably increased levels of neuropeptide Y and somatostatin, and neurotrophin-3 (NT-3) also increased these peptides but required higher concentrations. At elevating substance P, however, NT-3 was as potent as BDNF. In contrast, NGF had negligible or no effect. Neurotrophins administered into neonatal brain exhibited slightly different potencies for increasing these neuropeptides: The most marked increase in neuropeptide Y levels was obtained in the neocortex by NT-5, whereas in the striatum and hippocampus by BDNF, although all three neurotrophins increased somatostatin similarly in all the brain regions examined. Overall spatial patterns of the neuropeptide induction were similar among the neurotrophins. Neurons in adult rat brain can also react with the neurotrophins and alter neuropeptide expression in a slightly different fashion. Excitatory neuronal activity and hormones are known to change expression of neurotrophins. Therefore, neurotrophins, neuronal activity, and hormones influence each other and all regulate neurotransmitter/peptide expression in developing and mature brain. Physiological implication of the neurotransmitter/peptide differentiation activities is also discussed.  相似文献   
95.
Neuropeptide messenger plasticity in the CNS neurons following axotomy   总被引:2,自引:0,他引:2  
Neuronal peptides exert neurohormonal and neurotransmitter (neuromodulator) functions in the central nervous system (CNS). Besides these functions, a group of neuropeptides may have a capacity to create cell proliferation, growth, and survival. Axotomy induces transient (1–21 d) upregulation of synthesis and gene expression of neuropeptides, such as galanin, corticotropin releasing factor, dynorphin, calcitonin gene-related peptide, vasoactive intestinal polypeptide, cholecystokinin, angiotensin II, and neuropeptide Y. These neuropeptides are colocalized with “classic” neurotransmitters (acetylcholine, aspartate, glutamate) or neurohormones (vasopressin, oxytocin) that are downregulated by axotomy in the same neuronal cells. It is more likely that neuronal cells, in response to axotomy, increase expression of neuropeptides that promote their survival and regeneration, and may downregulate substances related to their transmitter or secretory activities.  相似文献   
96.
Generating developmental gradients by temperature gradients established within a developing organism is an easy, non-invasive technique to study physiological interdependencies between locally separated subsystems. A linear temperature gradient of about 10° C/mm was maintained up to 5 h in either direction along the long axis of a long-germ-type hymenopteran egg, which was simultaneously filmed by the 16 mm timelapse technique. The result was a dramatic desynchronization of development, which between the egg poles could reach up to 9.3 h relative to normal development. Within the same egg, up to seven mitotic waves (i.e. eight different nuclear generations) were observed at the same time, and the subsequent cellularization process was extremely asynchronous. The initial regions of the mitotic waves, the fountain flow of the ooplasm, and the gastrulation process were shifted towards the egg pole kept at higher temperatures. Developmental processes occurring successively in normal development now took place simultaneously, with either direction of the temperature gradient. For instance, while gastrulation had started in the warm region, midblastula transition and cellularization were in progress in the middle of the egg, and intravitelline nuclear multiplication occurred at the cold pole, by rapid and still biphasic cell cycles. In some respects, development resembled that of a short-germ-type insect egg. Nevertheless, the developmental processes were resynchronized after the temperature gradient was switched off. Surprisingly, the extreme desynchronization during early development did not affect the segment pattern of the resulting embryos. The technique of inducing well-defined developmental asynchronies might be applied in Drosophila to analyse the subtle interplay between maternal and zygotic gene activities described in this species.  相似文献   
97.
Summary Mechanically dividing an insect egg into anterior and posterior fragments results in a segment gap (Sander 1976), a loss of non-terminal segments in the constricted region. By altering the stage and duration of constriction, we produced different types of egg fragments in the pea beetleCallosobruchus. The patterns formed by these fragments suggest the existence of interactions between anterior and posterior egg regions that influence segment patterning and placement. Segments in excess of the numbers expected on the basis of permanent constrictions were produced in fragments when: (1) the constriction was released before cellularization occurred and (2) in addition the complementary fragment degenerated. Apparently the degenerating fragment induced the formation of excess segments in the developing fragment. Differences in the time and extent of excess segment formation in anterior versus posterior fragments suggest an asymmetric distribution of prerequisites for segment formation. This conclusion is consistent with our finding that a partial reversal of segment sequence (double abdomen formation) can be induced only in posterior fragments by a degenerating fragment, but not in anterior fragments (see companion paper).The formation of excess segments shows that the segment gap observed after permanent separation cannot be due to non-specific damage, caused by the process of constriction as such, to the egg or to localized putative segment precursors.  相似文献   
98.
Summary (1) The distribution of the extracellular space (ECS) in the outer part of the locust compound eye has been mapped with lanthanum and ruthenium red, applied to the retina. (2) In the photoreceptor zone, about 2.4% of the volume is ECS, in agreement with radiotracer and electrical estimates. Of this ECS, about 70% lies in lacunae between ommatidia, but only 1–2% adjacent to the photosensitive rhabdom. The lacunae are filled with material which binds applied tracers, and are thought to be structural spaces. (3) It has been suggested several times that such a small cation pool is insufficient to sustain more than a few large photoresponses, but this is shown to be incorrect. Enough Na+ lies within the rhabdomal ECS and within rapid diffusional access to it, to impose no immediate limitation. (4) The palisade vacuoles surrounding the rhabdom are intracellular, and are typical of light as well as dark-adapted eyes. (5) Tracers fail to penetrate more than about 30 m into the axon zone, in agreement with electrical, dye and radiotracer indications of a blood-eye barrier near this point. Septate and gap junctions between glial membranes proliferate at this level, the lacunae disappear, and the axonal clefts narrow, but no tight junctions were seen. Comparison is made with the barrier around the nerve cord. (6) The secondary pigment cells in the retina may function as osmotic/ionic buffers, in conjunction with the blood-eye barrier.  相似文献   
99.
The morphology of the antennal hair-sensilla of Periplaneta americana, their distribution and frequency on the antennal flagellum have been examined by transmission- and scanning-electron microscopy. The types of sensilla were distinguished with respect to physiologically relevant criteria such as wall structure and number of sensory cells. Among the sensilla of the antenna of the adult male, long, single-walled sensilla with four sensory cells (types sw B), Probably responsible for reception of sexual pheromones, are most frequent, representing about 54% of the antennal sensilla. About half of these sensilla are newly-formed at the imaginal ecdysis; the other half are derived from the shorter type sw B sensilla of the nymphal antenna. Short type sw B sensilla are present in all larval stages of both sexes and in adult females as well. During the imaginal ecdysis of males, however, the length of these sensilla increases to double that found in nymphs. Dendritic branches also increase in number. During postembryonic development, the number of sensory fibers in the antennal flagellum increases nearly 20-fold, from 14,000 in the first larval instar to about 270,000 in the adult male. The greatest increase, approximately 90%, occurs during the last developmental stage.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号