首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11710篇
  免费   868篇
  国内免费   658篇
  2024年   44篇
  2023年   244篇
  2022年   416篇
  2021年   471篇
  2020年   463篇
  2019年   505篇
  2018年   501篇
  2017年   364篇
  2016年   365篇
  2015年   455篇
  2014年   490篇
  2013年   691篇
  2012年   350篇
  2011年   399篇
  2010年   293篇
  2009年   431篇
  2008年   421篇
  2007年   490篇
  2006年   420篇
  2005年   377篇
  2004年   321篇
  2003年   330篇
  2002年   300篇
  2001年   205篇
  2000年   189篇
  1999年   229篇
  1998年   236篇
  1997年   216篇
  1996年   208篇
  1995年   191篇
  1994年   202篇
  1993年   207篇
  1992年   200篇
  1991年   178篇
  1990年   160篇
  1989年   162篇
  1988年   125篇
  1987年   134篇
  1986年   128篇
  1985年   170篇
  1984年   189篇
  1983年   118篇
  1982年   127篇
  1981年   125篇
  1980年   95篇
  1979年   91篇
  1978年   53篇
  1977年   44篇
  1976年   41篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   
52.
The viability ofMycobacterium leprae, maintained within 33B Schwannoma cells, was estimated in terms of incorporation of [14C] acetate into its specific phenolic glycolipid-1. This measure of viability was correlated with two other assays,viz., fluorescein diacetate/ethidium bromide staining and mouse footpad growth. Observation of a 2-fold increase in the number of intracellularMycobacterium leprae over an experimental period of 12 days also corroborated this contention. Furthermore, on addition of anti-leprosy drugs to these intracellularMycobacterium leprae there was significant decrease in phenolic glycolipid-1 synthesis indicative of loss of viability of the organisms. This study also established the importance of the host cell for active bacillary metabolism, asMycobacterium leprae maintained in cell-free conditions showed no incorporation into phenolic glycolipid-1. Moreover, compromising the host’s protein synthesis capacity with cycloheximide, also led to reduction in bacillary metabolism. As this system measures the metabolic synthesis of a uniqueMycobacterium leprae component, it would be useful for development and screening of compounds acting against specific bacillary targets.  相似文献   
53.
Chronic administration of ethanol in rats caused the reduction of serum cholesterol binding reserve. The very low density and high density lipoproteins, main serum cholesterol binding reserves, were slightly increased with corresponding increases in their lipid and protein components during initial stage of alcohol consumption. However, these capacities get deminished during reversal of hyperlipemia induced by prolonged action of ethanol. This situation may be an early indicator for the initiation of hepatic damage and a variety of secondary effects of ethanol.  相似文献   
54.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   
55.
The possibility to apply N-15 in vivo NMR spectroscopy to study algal N-metabolism has been investigated. N-15 labelled cells of the green alga Chlorella fusca, subjected to nitrogen starvation and N-14 labelled cells supplied with K15NO3 after prolonged nitrogen starvation were monitored by N-15 in vivo NMR spectroscopy at different times after the change in their nitrogen supply. During 20–40 min, necessary for the acquisition of 1 spectrum, the cells were under dark anaerobic conditions, but the relative amounts of the metabolites detected did not change. Signals from 2 acid amides, from the side chain nitrogens of arginine and lysine, from prolin as well as 4 signals from α amino groups of amino acids were detected. Besides two signals not yet reported in the literature were found. They may be due to amino compounds, but not to amino acids. The amount of free amino acids in the cells increases not only upon resupply of nitrogen starved cells with nitrate but also during the first hours after nitrate depletion. The spectra obtained from N-15 labelled autospores show that N-15 in vivo NMR spectroscopy can be applied to the investigation of N metabolism of the cells.  相似文献   
56.
Lindblad  C.  Kautsky  U.  André  C.  Kautsky  N.  Tedengren  M. 《Hydrobiologia》1989,188(1):277-283
The effects of antifouling paint leachate containing tributyltin on community metabolism and nutrient dynamics were measured in situ on natural communities dominated by Fucus vesiculosus. The measurements were made in two areas with different salinities and at various TBT concentrations up to about 5 µg 1–1. A portable continuous flow-through system was used in which the communities were incubated for a week. Continual measurements of oxygen, temperature, light and flow rate of water were made. A Perturbation Index (PI) and an Absolute Disturbance Index (ADI) were used to describe the changes due to treatment relative to the control, and to obtain a total picture of disturbance using all measured parameters. Photosynthesis was particularly strongly affected and changes were obvious in oxygen production and nutrient uptake at TBT levels as low as 0.6 µg 1–1.  相似文献   
57.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   
58.
After uptake of microbial ferrisiderophores, iron is assumed to be released by reduction. Two ferrisiderophore-reductase activities were identified in Escherichia coli K-12. They differed in cellular location, susceptibility to amytal, and competition between oxygen and ferrichrome-iron(III) reduction. The ferrisiderophore reductase associated with the 40,000×g sediment (membrane-bound enzyme) was inhibited by 10 mM amytal in contrast to the ferrisiderophore reductase present in the 100,000×g supernatant (soluble enzyme). Reduction by the membrane-bound enzyme followed sigmoid kinetics, but was biphasic in the case of the soluble enzyme. The soluble reductase could be assigned to a protein consisting of a single polypeptide of M r 26000. Reduction of iron(III) by the purified enzyme depended on the addition of NADH or NADPH which were equally active reductants. The cofactor FMN and to a lesser degree FAD stimulated the reaction. Substrate specificity of the soluble reductase was low. In addition to the hydroxamate siderophores arthrobactin, schizokinen, fusigen, aerobactin, ferrichrome, ferrioxamine B, coprogen, and ferrichrome A, the iron(III) complexes of synthetic catecholates, dihydroxy benzoic acid, and dicitrate, as well as carrier-free iron(III) were accepted as substrates. Both ferrisiderophore reductases were not controlled by the fur regulatory system and were not suppressed by anaerobic growth.Abbreviations DHB dihydroxybenzoic acid - MECAM 1,3,5-N,N,N-tris-(2,3-dihydroxybenzoyl)-triamino-methylbenzene - MECAMS 2,3-dihydroxy-5-sulfonyl-derivative of MECAM  相似文献   
59.
Cultures of Chromatium vinosum, devoid of sulfur globules, were supplemented with sulfide and incubated under anoxic conditions in the light. The concentrations of sulfide, polysulfides, thiosulfate, polythionates and elemental sulfur (sulfur rings) were monitored for 3 days by ion-chromatography and reversed-phase HPLC. While sulfide disappeared rapidly, thiosulfate and elemental sulfur (S6, S7 S8 rings) were formed. After sulfide depletion, the concentration of thiosulfate decreased fairly rapidly, but elemental sulfur was oxidized very slowly to sulfate. Neither polysulfides (S x 2– ), polythionates (SnO 6 2– , n=4–6), nor other polysulfur compounds could be detected, which is in accordance with the fact that sulfide-grown cells were able to oxidize polysulfide without lag. The nature of the intracellular sulfur globules is discussed.  相似文献   
60.
Laboratory cultures of cowpea Rhizobium MNF2030 grew on 4-aminobutyrate (GABA) as sole source of carbon and nitrogen. GABA transport was active since it was inhibited by carbonyl cyanide mchlorophenyl hydrazone and 2,4-dinitrophenol and cells developed a 400-fold concentration gradient across the cell membrane. Arsenite treatment of GABA-grown cells revealed stoichiometric conversion of GABA to pyruvate, indicating that 2-oxoglutarate is not an intermediate in GABA catabolism. GABA catabolism by cells of strain MNF2030 grown on GABA appreared to involve GABA transaminase, succinic semialdehyde dehydrogenase and malic enzyme; the first two enzymes were specifically induced by growth on GABA. The deamination process and removal of NH3 in cells catabolizing GABA involved GABA: 2-oxoglutarate transaminase; glutamate: oxaloacetate aminotransferase; asparate: pyruvate aminotransferase and alanine dehydrogenase.Isolated snakebean bacteroids of strain MNF2030 transported only small amounts of GABA and had uninduced levels of GABA catabolic enzymes, even though the nodules contained significant levels of GABA. The data suggest that GABA is not available to snakebean nodule bacteroids, presumably because of a control imposed by the peribacteroid membrane.Abbreviations CCCP Carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid - DTT dithiothreitol - SSAD succinic semialdehyde dehydrogenase - GABAT 4-aminobutyrate transaminase - GABA 4-aminobutyrate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号