首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   5篇
  2022年   1篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   13篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   21篇
  2013年   6篇
  2012年   9篇
  2011年   13篇
  2010年   2篇
  2009年   4篇
排序方式: 共有106条查询结果,搜索用时 203 毫秒
31.
Francisella tularensis is an important human pathogen responsible for causing tularemia. F. tularensis has long been developed as a biological weapon and is now classified as a category A agent by the Centers for Disease Control because of its possible use as a bioterror agent. F. tularensis represses inflammasome; a cytosolic multi-protein complex that activates caspase-1 to produce proinflammatory cytokines IL-1β and IL-18. However, the Francisella factors and the mechanisms through which F. tularensis mediates these suppressive effects remain relatively unknown. Utilizing a mutant of F. tularensis in FTL_0325 gene, this study investigated the mechanisms of inflammasome repression by F. tularensis. We demonstrate that muted IL-1β and IL-18 responses generated in macrophages infected with F. tularensis live vaccine strain (LVS) or the virulent SchuS4 strain are due to a predominant suppressive effect on TLR2-dependent signal 1. Our results also demonstrate that FTL_0325 of F. tularensis impacts proIL-1β expression as early as 2 h post-infection and delays activation of AIM2 and NLRP3-inflammasomes in a TLR2-dependent fashion. An enhanced activation of caspase-1 and IL-1β observed in FTL_0325 mutant-infected macrophages at 24 h post-infection was independent of both AIM2 and NLRP3. Furthermore, F. tularensis LVS delayed pyroptotic cell death of the infected macrophages in an FTL_0325-dependent manner during the early stages of infection. In vivo studies in mice revealed that suppression of IL-1β by FTL_0325 early during infection facilitates the establishment of a fulminate infection by F. tularensis. Collectively, this study provides evidence that F. tularensis LVS represses inflammasome activation and that F. tularensis-encoded FTL_0325 mediates this effect.  相似文献   
32.
Microglia are tissue-resident macrophages residing in the central nervous system(CNS) and play critical roles in removing cellular debris and infectious agents as well as regulating neurogenesis and neuronal activities. Yet, the molecular basis underlying the establishment of microglia pool and the maintenance of their homeostasis in the CNS remain largely undefined. Here we report the identification and characterization of a mutant zebrafish, which harbors a point mutation in the nucleotide-binding oligomerization domain(NOD) like receptor gene nlrc3-like, resulting in the loss of microglia in a temperature sensitive manner. Temperature shift assay reveals that the late onset of nlrc3-like deficiency leads to excessive microglia cell death. Further analysis shows that the excessive microglia death in nlrc3-like deficient mutants is attributed, at least in part, to aberrant activation of canonical inflammasome pathway. Our study indicates that proper regulation of inflammasome cascade is critical for the maintenance of microglia homeostasis.  相似文献   
33.
Stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor, and the loss-of-function mutations in the stefin B gene were reported in patients with Unverricht-Lundborg disease (EPM1). In this study we demonstrated that stefin B-deficient (StB KO) mice were significantly more sensitive to the lethal LPS-induced sepsis and secreted higher amounts of pro-inflammatory cytokines IL-1β and IL-18 in the serum. We further showed that increased caspase-11 gene expression and better pro-inflammatory caspase-1 and -11 activation determined in StB KO bone marrow-derived macrophages resulted in enhanced IL-1β processing. Pretreatment of macrophages with the cathepsin inhibitor E-64d did not affect secretion of IL-1β, suggesting that the increased cathepsin activity determined in StB KO bone marrow-derived macrophages is not essential for inflammasome activation. Upon LPS stimulation, stefin B was targeted into the mitochondria, and the lack of stefin B resulted in the increased destabilization of mitochondrial membrane potential and mitochondrial superoxide generation. Collectively, our study demonstrates that the LPS-induced sepsis in StB KO mice is dependent on caspase-11 and mitochondrial reactive oxygen species but is not associated with the lysosomal destabilization and increased cathepsin activity in the cytosol.  相似文献   
34.
Inflammasomes are macromolecular complexes that mediate inflammatory and cell death responses to pathogens and cellular stress signals. Dysregulated inflammasome activation is associated with autoinflammatory syndromes and several common diseases. During inflammasome assembly, oligomerized cytosolic pattern recognition receptors recruit procaspase-1 and procaspase-8 via the adaptor protein ASC. Inflammasome assembly is mediated by pyrin domains (PYDs) and caspase recruitment domains, which are protein interaction domains of the death fold superfamily. However, the molecular details of their interactions are poorly understood. We have studied the interaction between ASC and pyrin PYDs that mediates ASC recruitment to the pyrin inflammasome, which is implicated in the pathogenesis of familial Mediterranean fever. We demonstrate that both the ASC and pyrin PYDs have multifaceted binding modes, involving three sites on pyrin PYD and two sites on ASC PYD. Molecular docking of pyrin-ASC PYD complexes showed that pyrin PYD can simultaneously interact with up to three ASC PYDs. Furthermore, ASC PYD can self-associate and interact with pyrin, consistent with previous reports that pyrin promotes ASC clustering to form a proinflammatory complex. Finally, the effects of familial Mediterranean fever-associated mutations, R42W and A89T, on structural and functional properties of pyrin PYD were investigated. The R42W mutation had a significant effect on structure and increased stability. Although the R42W mutant exhibited reduced interaction with ASC, it also bound less to the pyrin B-box domain responsible for autoinhibition and hence may be constitutively active. Our data give new insights into the binding modes of PYDs and inflammasome architecture.  相似文献   
35.

Background

The NLRP3 inflammasome is a sensor of specific pathogen, host and environmental danger molecules. Upon activation NLRP3 recruits caspase-1, which cleaves and thereby activates precursor interleukin-1β (IL-1β) and IL-18 to initiate immune responses. Several recent studies have posited that the mitochondria are a central regulator of NLRP3 function.

Scope of review

Mitochondrial reactive oxygen species (mtROS) production, mitochondrial apoptosis, mitochondrial DNA (mtDNA) release, mitophagy, calcium induced mitochondrial damage and mitochondrial co-ordination of NLRP3 localization have all been implicated in regulating NLRP3 activity. In this article we review the literature both for and against these models of NLRP3 inflammasome activation, and highlight other recent contentious issues concerning NLRP3 functioning.

Major conclusions

Although many mechanisms have been proposed for activating NLRP3, no unified model has yet to gain acceptance. Further research is required to clarify how the mitochondria might influence NLRP3 activity.

General significance

While the NLRP3 inflammasome is important for host protection against microbial infection, rare genetic mutations in NLRP3 also cause severe auto-inflammatory diseases. More recent research has implicated NLRP3 activity in pathologies such as atherosclerosis, cancer, type 2 diabetes and Alzheimer's disease. Understanding the mechanisms of NLRP3 inflammasome formation and regulation therefore has the potential to uncover new inflammasome and disease specific therapeutic targets. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   
36.
炎症小体是存在于细胞内由激活自身免疫应答的多种蛋白质组成的复合体,可诱导半胱天冬蛋白酶(caspase)-1自我剪切,caspase-1能够调控白细胞介素(IL)-1β、IL-18的产生,并进而刺激炎症小体的形成和分泌,调控机体的自身免疫应答反应。NLRP3炎症小体属于NOD样受体家族,是一种胞内模式识别受体,主要存在于巨噬细胞和树突状细胞,发挥激活机体免疫炎症的关键作用。病原相关分子模式及损伤相关分子模式与NLRPs结合,启动固有免疫应答,从而导致自身免疫性疾病的发生和发展。本文通过分析归纳近年来炎症小体与自身免疫性疾病的相关性的研究进展,以期为以炎症小体为作用靶点,防治自身免疫性疾病的研究提供指导。  相似文献   
37.
目的 探讨胃饥饿素对小鼠急性肺损伤的保护作用和机制.方法 将60只小鼠采用随机数字表法分为6组:对照组、模型组、胃饥饿素低、中、高剂量组和地塞米松组.对照组和模型组腹腔注射0.2 mL生理盐水,胃饥饿素各组分别注射400、200、100 μg/kg溶液,地塞米松组注射2 mg/kg.给药后1h,对照组滴注等体积生理盐水...  相似文献   
38.
The most studied physiological function of biliary epithelial cells (cholangiocytes) is to regulate bile flow and composition, in particular the hydration and alkalinity of the primary bile secreted by hepatocytes. After almost three decades of studies it is now become clear that cholangiocytes are also involved in epithelial innate immunity, in inflammation, and in the reparative processes in response to liver damage. An increasing number of evidence highlights the ability of cholangiocyte to undergo changes in phenotype and function in response to liver damage. By participating actively to the immune and inflammatory responses, cholangiocytes represent a first defense line against liver injury from different causes. Indeed, cholangiocytes express a number of receptors able to recognize pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), such as Toll-like receptors (TLR), which modulate their pro-inflammatory behavior. Cholangiocytes can be both the targets and the initiators of the inflammatory process. Derangements of the signals controlling these mechanisms are at the basis of the pathogenesis of different cholangiopathies, both hereditary and acquired, such as cystic fibrosis-related liver disease and sclerosing cholangitis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   
39.
Cholangiocytes, the epithelial cells lining the bile ducts, are an important subset of liver cells. They are involved in the modification of bile volume and composition, and respond to endogenous and exogenous stimuli. Along the biliary tree, two different kinds of cholangiocytes exist: small and large cholangiocytes. Each type has different features and biological role in physiologic and pathologic conditions, and their immunobiology is important for understanding biliary diseases. Cholangiocytes provide the first line of defence against luminal microbes in the hepatobiliary system. Indeed, they express a variety of pattern recognition receptors and may start an antimicrobial defence activating a set of intracellular signalling cascades. In response to injury, cholangiocytes that are normally quiescent become reactive and acquire a neuroendocrine-like phenotype with the release of proinflammatory mediators and antimicrobial peptides, which support biliary epithelial integrity. These molecules act in an autocrine/paracrine manner to modulate cholangiocyte biology and determine the evolution of biliary damage. Failure or dysregulation of such mechanisms may influence the progression of cholangiopathies, a group of diseases that selectively target biliary cells. In this review, we focus on the response of cholangiocytes in inflammatory conditions, with a particular focus on the mechanism driving cholangiocytes adaptation to damage. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   
40.
Synthesis of several 1,5-Anhydro-d-fructose (1,5-AF) derivatives to evaluate inhibitory activities of the inflammasome was carried out. Recently, 1,5-AF reported to suppress the inflammasome, although with only low activity. We focused on the hydration of 2-keto form of 1,5-AF and speculated that this hydration was the cause of low activity. Therefore, we synthesized some 1,5-AF derivatives that would not be able to form the dimer conformation and can be expected to have high activity against inflammasome, and then evaluated their inhibitory activities with respect to the NLRP3 inflammasome by using mouse bone marrow-derived macrophages and human THP-1 cells. As a result, some synthesized 2-keto form compounds had much higher inhibitory activities with respect to the NLRP3 inflammasome than did 1,5-AF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号