首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   5篇
  2022年   1篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   13篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   21篇
  2013年   6篇
  2012年   9篇
  2011年   13篇
  2010年   2篇
  2009年   4篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
101.
Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS sig-nal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.  相似文献   
102.
Over the last few decades, many different groups have been engaged in studies of new roles for mitochondria, particularly the coupling of alterations in the redox pathway with the inflammatory responses involved in different diseases, including Alzheimer’s disease, Parkinson's disease, atherosclerosis, cerebral cavernous malformations, cystic fibrosis and cancer. Mitochondrial dysfunction is important in these pathological conditions, suggesting a pivotal role for mitochondria in the coordination of pro-inflammatory signaling from the cytosol and signaling from other subcellular organelles. In this regard, mitochondrial reactive oxygen species are emerging as perfect liaisons that can trigger the assembly and successive activation of large caspase-1- activating complexes known as inflammasomes. This review offers a glimpse into the mechanisms by which inflammasomes are activated by mitochondrial mechanisms, including reactive oxygen species production and mitochondrial Ca2+ uptake, and the roles they can play in several inflammatory pathologies.  相似文献   
103.
It is now widely accepted that some forms of necrosis are controlled by a dedicated signaling pathway triggered by various cell surface and intracellular receptors. This regulated form of necrosis is mediated by the kinase activity of receptor-interacting protein kinase 1 (RIP1/RIPK1) and/or RIP3/RIPK3. A number of studies using the RIP1 kinase inhibitor Necrostatin-1 (Nec-1) and its derivatives, or RIP3-deficient mice demonstrated that RIP1 and RIP3 are involved in various infectious and sterile inflammatory diseases. As a consequence, these specific phenotypes were construed to depend on necrosis. However, emerging evidence indicates that the RIP1 kinase activity and RIP3 can also control apoptosis and inflammatory cytokine production independent of necrosis. Therefore, we may need to re-interpret conclusions drawn based on loss of RIP1 or RIP3 functions in in vivo models. We propose that studies of RIP1 and RIP3 in different inflammatory responses need to consider cell death-dependent and independent mechanisms of the RIP kinases.  相似文献   
104.
Staphylococcus aureus is one of the versatile Gram positive bacteria causing a range of diseases. Upon challenge, host immune cells recognize S. aureus and mount diverse immune responses including production of pro-inflammatory cytokines such as IL-1β and TNF-α. These cytokines are important mediators of inflammation which can be detected via various immunological methods such as enzyme linked immunosorbent assay (ELISA) and immunoblotting. In the current study, we found that a number of clinical isolates as well as laboratory strains of S. aureus exhibited cross reactivity with ELISA antibodies for murine IL-1β and TNF-α assays. This cross reactivity generates exaggerated false positive signals which can be a source of discrepancy for the understanding of real immune responses against S. aureus infection by host immune cells.  相似文献   
105.
The NLRP3 inflammasome is a key intracellular component of the innate immune response. It is a three-protein complex essential for the production of mature interleukin 1-β. The complex, which is comprised of three proteins, NLRP3, ASC, and pro-caspase-1, has been implicated in the physiological response to pathogenic elements of cardiovascular disease and Alzheimer's disease. Investigations into the properties of the three proteins can be aided by larger-scale recombinant expression to produce adequate amounts. In the current study, a variety of NLRP3 inflammasome proteins were expressed in the ExpiCHO-S mammalian cell system with a particular focus on ASC. ASC fusion proteins with glutathione-S transferase, maltose-binding protein, and SUMO increased solubility and aided in determining the stability and oligomerization propensity of individual ASC domains and full-length ASC. ASC oligomerization was highly sensitive to protein concentration, ionic strength, and mutation. These observations provided strategic ways to enhance protein purification and characterize ASC oligomerization. The ExpiCHO-S expression system consistently produced high-yield recombinant NLRP3 inflammasome proteins which led to a further understanding of ASC oligomerization.  相似文献   
106.
IL-18 is a pleiotropic and multifunctional cytokine that belongs to the IL-1 family. It is produced as a biologically inactive precursor, which is cleaved into its active mature form mainly by caspase-1. The caspase becomes active from its inactive precursor (procaspase-1) upon assembly of an inflammasome. Because of IL-18’s potential pro-inflammatory and tissue destructive effects, its biological activities are tightly controlled in the body by its naturally occurring antagonist called IL-18BP. The antagonist is produced in the body both constitutively and in response to an increased production of IL-18 as a negative feedback mechanism. Under physiological conditions, most of IL-18 in the circulation is bound with IL-18BP and is inactive. However, an imbalance in the production of IL-18 and its antagonist (an increase in the production of IL-18 with a decrease, no increase or an insufficient increase in the production of IL-18BP) has been described in many chronic inflammatory diseases in humans. The imbalance results in an increase in the concentrations of free IL-18 (unbound with its antagonist) resulting in increased biological activities of the cytokine that contribute towards pathogenesis of the disease. In this article, we provide an overview of the current biology of IL-18 and its antagonist, discuss how the imbalance occurs in HIV infections and how it contributes towards development of AIDS and other non-AIDS-associated clinical conditions occurring in HIV-infected individuals undergoing combination anti-retroviral therapy (cART). Finally, we discuss challenges facing immunotherapeutic strategies aimed at restoring balance between IL-18 and its antagonist in these patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号