首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6655篇
  免费   289篇
  国内免费   128篇
  2024年   15篇
  2023年   172篇
  2022年   140篇
  2021年   195篇
  2020年   257篇
  2019年   413篇
  2018年   289篇
  2017年   300篇
  2016年   265篇
  2015年   135篇
  2014年   292篇
  2013年   550篇
  2012年   173篇
  2011年   287篇
  2010年   180篇
  2009年   304篇
  2008年   351篇
  2007年   316篇
  2006年   273篇
  2005年   240篇
  2004年   215篇
  2003年   147篇
  2002年   142篇
  2001年   92篇
  2000年   118篇
  1999年   91篇
  1998年   119篇
  1997年   88篇
  1996年   72篇
  1995年   136篇
  1994年   92篇
  1993年   96篇
  1992年   95篇
  1991年   70篇
  1990年   73篇
  1989年   43篇
  1988年   36篇
  1987年   35篇
  1986年   21篇
  1985年   26篇
  1984年   26篇
  1983年   19篇
  1982年   25篇
  1981年   9篇
  1980年   9篇
  1979年   6篇
  1978年   9篇
  1977年   5篇
  1976年   7篇
  1950年   1篇
排序方式: 共有7072条查询结果,搜索用时 31 毫秒
991.
Dedicated computing resources are expensive to develop, maintain, and administrate. Frequently, research groups require bursts of computing power, during which progress is still limited by available computing resources. One way to alleviate this bottleneck would be to use additional computing resources. Today, many computing devices remain idle most of the time. Passive volunteer computing exploits this unemployed reserve of computing power by allowing device‐owners to donate computing time on their own devices. Another complementary way to alleviate bottlenecks in computing resources is to use more efficient algorithms. Engaging volunteer computing employs human intuition to help solve challenging problems for which efficient algorithms are difficult to develop or unavailable. Designing engaging volunteer computing projects is challenging but can result in high‐quality solutions. Here, we highlight four examples.  相似文献   
992.
Cyflumetofen is a recently introduced acaricide with a novel mode of action, acting as an inhibitor of complex II of mitochondrial electron transport chain. It is activated by hydrolysis and the resulting de-esterified metabolite is a much stronger inhibitor. Cyflumetofen represents a great addition for the control of mite species including Tetranychus urticae, a major agricultural pest, which has the ability to develop resistance to most classes of pesticides rapidly. A resistant strain (Tu008R) was recently described and synergism experiments pointed towards the involvement of GSTs. Here, we conducted genome-wide gene expression analysis, comparing Tu008R with its parental susceptible strain, and identified the delta GST TuGSTd05 as the prime resistance-conferring candidate. Docking analysis suggests that both cyflumetofen and its de-esterified metabolite are potential substrates for conjugation by TuGSTd05. Several amino acids were identified that might be involved in the interaction, with Y107 and N103 possibly having an important role. To further investigate interaction as well as the role of Y107 and N103 in vitro, we recombinantly expressed and kinetically characterized the wild type TuGSTd05, TuGSTd05 Y107F and TuGSTd05 N103L mutants. While cyflumetofen was not found to act as a strong inhibitor, the de-esterified metabolite showed strong affinity for TuGSTd05 (IC50 = 4 μM), which could serve as a mechanism of rapid detoxification. Y107 and N103 might contribute to this interaction. HPLC-MS analysis provided solid indications that TuGSTd05 catalyzes the conjugation of ionized glutathione (GS) to cyflumetofen and/or its de-esterified metabolite and the resulting metabolite and possible site of attack were identified.  相似文献   
993.
As a continuation of our search for novel histamine H3 receptor ligands a series of twenty new tert-amyl phenoxyalkylamine derivatives (221) was synthesized. Compounds of four to eight carbon atoms spacer alkyl chain were evaluated on their binding properties at human histamine H3 receptor (hH3R). The highest affinities were observed for pentyl derivatives 68 (Ki = 8.8–23.4 nM range) and among them piperidine derivative 6 with Ki = 8.8 nM. Structures 6, 7 were also classified as antagonists in cAMP accumulation assay (with EC50 = 157 and 164 nM, respectively). Moreover, new compounds were also evaluated for anticonvulsant activity in Antiepileptic Screening Program (ASP) at National Institute of Neurological Disorders and Stroke (USA). Seven compounds (24, 9, 11, 12 and 20) showed anticonvulsant activity at maximal electroshock (MES) test in the dose of 30 mg/kg at 0.5 h. In the subcutaneous pentetrazole (scMET) test compound 4 showed protection at 100 and 300 mg/kg dose at mice, however compounds showed high neurotoxicity in rotarod test at used doses. Also, molecular modeling studies were undertaken, to explain affinity of compounds at hH3R (taking into the consideration X-ray analysis of compound 18). In order to estimate “drug-likeness” of selected compounds in silico and experimental evaluation of lipophilicity, metabolic stability and cytotoxicity was performed.  相似文献   
994.
CYP3A4 is the main human metabolizing enzyme, and many clinically relevant drug/herb-drug interactions (DDIs/HDIs) involving CYP3A4 are due to mechanism-based inhibition. In this study, pharmacophore model together with molecular docking (MD) are used to rapidly screen the potential CYP3A4 mechanism-based inhibitors from Tripterygium wilfordii, and in vitro experiments are conducted to validate the computational data. The results showed that the rate of computational prediction could be improved based on a combination of pharmacophore model and MD, and a combination of computational approaches might be a useful tool to identify potential mechanism-based inhibitor of CYP3A4 from herbal medicines.  相似文献   
995.
We have developed the convenient methods for synthesis of polyfluorosalicylic acids and their derivatives. For the first time the biological properties of polyfluorosalicylates were investigated in vitro (permeability through the biological membranes, COX-1 inhibitory action) and in vivo (anti-inflammatory, analgesic activities, acute toxicity). Molecular docking of polyfluorinated salicylates confirmed in vitro and in vivo experiments.  相似文献   
996.
The present study describes efficient and facile syntheses of varyingly substituted 3-thioaurones from the corresponding 3-oxoaurones using Lawesson’s reagent and phosphorous pentasulfide. In comparison, the latter methodology was proved more convenient, giving higher yields and required short and simple methodology. The structures of synthetic compounds were unambiguously elucidated by IR, MS and NMR spectroscopy. All synthetic compounds were screened for their inhibitory potential against in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Molecular docking studies were also performed in order to examine their binding interactions with AChE and BChE human proteins. Both studies revealed that some of these compounds were found to be good inhibitors against AChE and BChE.  相似文献   
997.
Type 2 diabetes is one of the biggest health challenges in the world and WHO projects it to be the 7th leading cause of death in 2030. It is a chronic condition affecting the way our body metabolizes sugar. Insulin resistance is high risk factor marked by expression of Lipoprotein Lipases and Peroxisome Proliferator-Activated Receptor that predisposes to type 2 diabetes. AMP-dependent protein kinase in AMPK signaling pathway is a central sensor of energy status. Deregulation of AMPK signaling leads to inflammation, oxidative stress, and deactivation of autophagy which are implicated in pathogenesis of insulin resistance. SIRT4 protein deactivates AMPK as well as directly inhibits insulin secretion. SIRT4 overexpression leads to dyslipidimeia, decreased fatty acid oxidation, and lipogenesis which are the characteristic features of insulin resistance promoting type 2 diabetes. This makes SIRT4 a novel therapeutic target to control type 2 diabetes. Virtual screening and molecular docking studies were performed to obtain potential ligands. To further optimize the geometry of protein–ligand complexes Quantum Polarized Ligand Docking was performed. Binding Free Energy was calculated for the top three ligand molecules. In view of exploring the stereoelectronic features of the ligand, density functional theory approach was implemented at B3LYP/6-31G* level. 30 ns MD simulation studies of the protein–ligand complexes were done. The present research work proposes ZINC12421989 as potential inhibitor of SIRT4 with docking score (?7.54 kcal/mol), docking energy (?51.34 kcal/mol), binding free energy (?70.21 kcal/mol), and comparatively low energy gap (?0.1786 eV) for HOMO and LUMO indicating reactivity of the lead molecule.  相似文献   
998.
Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer’s disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.  相似文献   
999.
The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 104 M?1, and with the increase in temperature, Stern–Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV–visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug–albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (Ro) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.  相似文献   
1000.
Polyamines such as spermine can have interaction with protein. The aim of the present study was to investigate how spermine could influence the structure, thermal stability, and the activity of α-chymotrypsin. Kinetics, thermodynamics, molecular dynamics (MD), and docking simulations studies were conducted to investigate the effect of spermine on the activity and structure of α-Chymotrypsin (α-Chy) in 50 mM Tris–HCl buffer, with the pH 8, using different spectroscopic techniques as well as molecular docking and MD simulations. The stability and activity of α-Chy were increased in the presence of spermine. The results of the kinetic study showed that the activity of spermine was increased. Enzyme activation was accompanied by changes on the α-Chy conformation. Fluorescence intensity changes showed dynamic quenching during spermine binding. The fluorescence quenching of the α-Chy suggested the more polar location of Trp residues. Near-UV and Far-UV circular dichroism studies also demonstrated the transfer of Trp, Phe, and Tyr residues to a more flexible environment. The increase in the absorption of α-Chy in the presence of spermine was as a result of the formation of spermine–α-Chy complex. Molecular docking results revealed the presence of one binding site with a negative value for the Gibbs free energy of the binding of spermine to α-Chy. Docking study also revealed that van der Waals interactions and hydrogen bonds played a major role in stabilizing the complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号