首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   117篇
  国内免费   7篇
  2024年   2篇
  2023年   5篇
  2022年   7篇
  2021年   12篇
  2020年   35篇
  2019年   31篇
  2018年   32篇
  2017年   24篇
  2016年   29篇
  2015年   29篇
  2014年   59篇
  2013年   47篇
  2012年   21篇
  2011年   32篇
  2010年   4篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   11篇
  2005年   6篇
  2004年   9篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有451条查询结果,搜索用时 15 毫秒
21.

Purpose

Based on multiple large clinical trials conducted over the last decades guidelines for implantable cardioverter-defibrillator (ICD) implantations have been evolving. The increase in primary prophylactic ICD implantations challenges us to be critical towards the indications in certain patient populations.

Methods

We retrospectively collected patient characteristics and rates of appropriate and inappropriate ICD therapy, appropriate and inappropriate ICD shock and mortality of all patients who received an ICD in the University Medical Center Utrecht (UMCU) over the years 2006–2011.

Results

A total of 1075 patients were included in this analysis (74 % male, mean age 61 ± 13 years, left ventricular ejection fraction 30 ± 13 %); 61 % had a primary indication and 58 % had ischaemic heart disease. During a mean follow-up period of 31 ± 17 months, 227 of the patients (21 %) received appropriate ICD therapy (149 (14 %) patients received an appropriate ICD shock). Females, patients with a primary prophylactic indication and patients with non-ischaemic heart disease experienced significantly less ICD therapy. Only a few patients (54, 5 %) received inappropriate ICD therapy; 33 (3 %) patients received an inappropriate ICD shock. Fifty-five patients died within one year after ICD implantation and were therefore, in retrospect, not eligible for ICD implantation.

Conclusion

Our study confirms the benefit of ICD implantation in clinical practice. Nevertheless, certain patients experience less benefit than others. A more patient-tailored risk stratification based on electrophysiological parameters would be lucrative to improve clinical benefit and cost-effectiveness.  相似文献   
22.

Background

Nowadays, there is a tremendous need for cheap disposable sensing devices for medical applications. Materials such as Carbon Nanotubes (CNTs) and regioregular P3HT are proven to offer a huge potential as cost-effective and solution processable semiconductors for (bio)sensing applications.

Methods

CNT-based field-effect transistors (CNT-FETs) as well as regioregular P3HT-based ones (P3HT-FETs) are fabricated and operated in the so-called electrolyte-gated configuration. The active layer of the P3HT-FETs consists of a spin-coated regioregular P3HT layer, which serves on one hand as the active sensing element and on the other hand as passivation layer for the transistor's metal contacts. The active layer of the nanotube transistors consists of a randomly distributed single walled CNT-network (> 90% semiconducting tubes) deposited from a CNT-ink solution by spin-coating.

Results

We compare both devices concerning their stability in aqueous environment and their response when exposed to buffers with different pH. We found that even if P3HT shows lower stability its pH sensitivity is reproducible even after long-term measurements.

Conclusion

CNT-FETs and P3HT-FETs offer different advantages and drawbacks concerning their stability in solution and the ease of fabrication. A discussion of their different sensing mechanisms as well as sensitivity is given here.

General Significance

This work reports on fast and cost-effective production of solution processable thin-film transistors based on carbon nanotubes and regioregular P3HT and demonstrates their suitability as reliable pH sensors. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   
23.
Abstract

Exploiting the burgeoning fields of genomics, proteomics and metabolomics improves understanding of human physiology and, critically, the mutations that signal disease susceptibility. Through these emerging fields, rational design approaches to diagnosis, drug development and ultimately personalized medicine are possible. Personalized medicine and point-of-care testing techniques must fulfill a host of constraints for real-world applicability. Point-of-care devices (POCDs) must ultimately provide a cost-effective alternative to expensive and time-consuming laboratory tests in order to assist health care personnel with disease diagnosis and treatment decisions. Sensor technologies are also expanding beyond the more traditional classes of biomarkers – nucleic acids and proteins – to metabolites and direct detection of pathogens, ultimately increasing the palette of available techniques for the use of personalized medicine. The technologies needed to perform such diagnostics have also been rapidly evolving, with each generation being increasingly sensitive and selective while being more resource conscious. Ultimately, the final hurdle for all such technologies is to be able to drive consumer adoption and achieve a meaningful medical outcome for the patient.  相似文献   
24.
25.
2010年,蕈状支原体Mycoplasma mycoides的人工合成,迎来了合成生物学的崭新时代.这种突破性的进展主要得益于酵母自身强大的DNA体内重组能力.近几年来,除了利用体内重组的DNA大片段拼接技术,基于连接或聚合思想的不同尺度的DNA体外组装方法也相继出现,如Biobrick\Bglbrick、SLIC与Gibson等温一步法等,这些方法的应用加快了合成生物学功能元件库、生物合成途径乃至微生物染色体的人工构建.事实上,目前所建立的各种DNA组装方法,均是由DNA分子拼接理念(包括两分子衔接思想与多片段组装模式)衍生而来.文中将在介绍DNA组装基本理念的基础上,对体内、体外主要的DNA组装方法进行简要梳理,希望为不同类型的合成生物学功能器件及生物合成途径的构造提供参考与借鉴.  相似文献   
26.
27.
Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on the principles of charge conservation and zero loop‐voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory‐fabricated contact‐mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs.  相似文献   
28.
Molecular hydrogen can be generated renewably by water splitting with an “artificial‐leaf device”, which essentially comprises two electrocatalyst electrodes immersed in water and powered by photovoltaics. Ideally, this device should operate efficiently and be fabricated with cost‐efficient means using earth‐abundant materials. Here, a lightweight electrocatalyst electrode, comprising large surface‐area NiCo2O4 nanorods that are firmly anchored onto a carbon–paper current collector via a dense network of nitrogen‐doped carbon nanotubes is presented. This electrocatalyst electrode is bifunctional in that it can efficiently operate as both anode and cathode in the same alkaline solution, as quantified by a delivered current density of 10 mA cm?2 at an overpotential of 400 mV for each of the oxygen and hydrogen evolution reactions. By driving two such identical electrodes with a solution‐processed thin‐film perovskite photovoltaic assembly, a wired artificial‐leaf device is obtained that features a Faradaic H2 evolution efficiency of 100%, and a solar‐to‐hydrogen conversion efficiency of 6.2%. A detailed cost analysis is presented, which implies that the material‐payback time of this device is of the order of 100 days.  相似文献   
29.
30.
Data‐driven materials discovery has become increasingly important in identifying materials that exhibit specific, desirable properties from a vast chemical search space. Synergic prediction and experimental validation are needed to accelerate scientific advances related to critical societal applications. A design‐to‐device study that uses high‐throughput screens with algorithmic encodings of structure–property relationships is reported to identify new materials with panchromatic optical absorption, whose photovoltaic device applications are then experimentally verified. The data‐mining methods source 9431 dye candidates, which are auto‐generated from the literature using a custom text‐mining tool. These candidates are sifted via a data‐mining workflow that is tailored to identify optimal combinations of organic dyes that have complementary optical absorption properties such that they can harvest all available sunlight when acting as co‐sensitizers for dye‐sensitized solar cells (DSSCs). Six promising dye combinations are shortlisted for device testing, whereupon one dye combination yields co‐sensitized DSSCs with power conversion efficiencies comparable to those of the high‐performance, organometallic dye, N719. These results demonstrate how data‐driven molecular engineering can accelerate materials discovery for panchromatic photovoltaic or other applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号