首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2014年   3篇
  2012年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
11.
12.
The major histocompatibility complex (MHC) class I (MHC-I) antigen presentation system is responsible for the cell-surface presentation of self-proteins and intracellular viral proteins. This pathway is important in screening between self, and non-self or infected cells. In this pathway, proteins are partially degraded to peptides in the cytosol and targeted to the cell surface bound to an MHC-I receptor protein. At the cell surface, T cells bypass cells displaying self-peptides but destroy others displaying foreign antigens. Cells contain several isoforms of the proteasome, but it is thought that the immunoproteasome is the major form involved in generating peptides for the MHC-I pathway. How all intracellular proteins are targeted for MHC-I processing is unclear. Oxidative stress is experienced by all cells, and all proteins are exposed to oxidation. We propose that oxidative modification makes proteins susceptible to degradation by the immunoproteasome. This could be called the protein oxidation and immunoproteasome or 'PrOxI' hypothesis of MHC-I antigen processing. Protein oxidation may, thus, be a universal mechanism for peptide generation and presentation in the MHC-I pathway.  相似文献   
13.
Animals with immune systems have two types of proteasomes, "standard proteasomes" and "immunoproteasomes" that respectively contain constitutively expressed catalytic subunits or interferon-gamma-inducible catalytic subunits. Interestingly, proteasome assembly is biased against formation of most mixed proteasomes containing combinations of standard subunits and immunosubunits. We previously demonstrated that catalytic subunit propeptide differences contribute to this assembly specificity. In the current study, we investigated the contributions of catalytic subunit propeptides and C-terminal extensions to intra-proteasome protein-protein interactions that are potentially involved in mediating biased assembly of human proteasomes, and we found a number of interactions that differentially depended on these structures. For example, the C-terminal extension of standard subunit beta2 is required for beta2's interaction with adjacent beta3, whereas the C-terminal extension of immunosubunit beta2i is dispensable for beta2i's interaction with beta3. Taken together, our results suggest mechanisms whereby differential intra-proteasome interactions could contribute to proteasome assembly specificity.  相似文献   
14.
As a major component of the crucial nonlysosomal protein degradation pathway in the cells, the proteasome has been implicated in many diseases such as Alzheimer’s disease, Huntington’s disease, inflammatory bowel diseases, autoimmune diseases, multiple myeloma (MM) and other cancers. There are two main proteasome subtypes: the constitutive proteasome which is expressed in all eukaryotic cells and the immunoproteasome which is expressed in immune cells and can be induced in other cell types. Majority of currently available proteasome inhibitors are peptide backbone-based, having short half-lives in the body. It is highly desirable to identify novel, immunoproteasome-selective inhibitors with non-peptide scaffolds for development of novel therapeutics. Through combined virtual screening and experimental studies targeting the immunoproteasome, we have identified a set of novel immunoproteasome inhibitors with diverse non-peptide scaffolds. Some of the identified inhibitors have significant selectivity for the immunoproteasome over the constitutive proteasome. Unlike most of the currently available proteasome inhibitors, these new inhibitors lacking electrophilic pharmacophores are not expected to form a covalent bond with proteasome after the binding. These non-peptide scaffolds may provide a new platform for future rational drug design and discovery targeting the immunoproteasome.  相似文献   
15.
Immunoproteasomes are alternative forms of proteasomes specialized in the generation of MHC class I antigenic peptides and important for efficient cytokine production. We have identified a new biochemical property of 26S immunoproteasomes, namely the ability to hydrolyze basic proteins at greatly increased rates compared to constitutive proteasomes. This enhanced degradative capacity is specific for basic polypeptides, since substrates with a lower content in lysine and arginine residues are hydrolyzed at comparable rates by constitutive and immunoproteasomes. Crucially, selective inhibition of the immunoproteasome tryptic subunit β2i strongly reduces degradation of basic proteins. Therefore, our data demonstrate the rate limiting function of the proteasomal trypsin-like activity in controlling turnover rates of basic protein substrates and suggest new biological roles for immunoproteasomes in maintaining cellular homeostasis by rapidly removing a potentially harmful excess of free histones that can build up under different pathophysiological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号