首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6318篇
  免费   302篇
  国内免费   313篇
  2023年   86篇
  2022年   97篇
  2021年   75篇
  2020年   112篇
  2019年   148篇
  2018年   189篇
  2017年   113篇
  2016年   130篇
  2015年   141篇
  2014年   313篇
  2013年   401篇
  2012年   183篇
  2011年   355篇
  2010年   328篇
  2009年   318篇
  2008年   285篇
  2007年   292篇
  2006年   297篇
  2005年   298篇
  2004年   225篇
  2003年   176篇
  2002年   137篇
  2001年   88篇
  2000年   87篇
  1999年   107篇
  1998年   86篇
  1997年   95篇
  1996年   70篇
  1995年   90篇
  1994年   94篇
  1993年   74篇
  1992年   74篇
  1991年   63篇
  1990年   48篇
  1989年   51篇
  1988年   38篇
  1987年   48篇
  1986年   31篇
  1985年   113篇
  1984年   260篇
  1983年   159篇
  1982年   157篇
  1981年   98篇
  1980年   88篇
  1979年   78篇
  1978年   50篇
  1977年   26篇
  1976年   16篇
  1975年   12篇
  1974年   20篇
排序方式: 共有6933条查询结果,搜索用时 15 毫秒
991.
Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO2. In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide‐type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back‐pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO2 with 20% 2‐propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2‐propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back‐pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns.  相似文献   
992.

Background

It remains an open question whether plant phloem sap proteins are functionally involved in plant defense mechanisms.

Methods

The antifungal effects of two profilin proteins from Arabidopsis thaliana, AtPFN1 and AtPFN2, were tested against 11 molds and 4 yeast fungal strains. Fluorescence profiling, biophysical, and biochemical analyses were employed to investigate their antifungal mechanism.

Results

Recombinant AtPFN1 and AtPFN2 proteins, expressed in Escherichia coli, inhibited the cell growth of various pathogenic fungal strains at concentrations ranging from 10 to 160?μg/mL. The proteins showed significant intracellular accumulation and cell-binding affinity for fungal cells. Interestingly, the AtPFN proteins could penetrate the fungal cell wall and membrane and act as inhibitors of fungal growth via generation of cellular reactive oxygen species and mitochondrial superoxide. This triggered the AtPFN variant-induced cell apoptosis, resulting in morphological changes in the cells.

Conclusion

PFNs may play a critical role as antifungal proteins in the Arabidopsis defense system against fungal pathogen attacks.

General significance

The present study indicates that two profilin proteins, AtPFN1 and AtPFN2, can act as natural antimicrobial agents in the plant defense system.  相似文献   
993.
The DNA of all living cells undergoes continuous structural and chemical alteration, which may be derived from exogenous sources, or endogenous, metabolic pathways, such as cellular respiration, replication and DNA demethylation. It has been estimated that approximately 70,000 DNA lesions may be generated per day in a single cell, and this has been linked to a wide variety of diseases, including cancer. However, it is puzzling why potentially mutagenic DNA modifications, occurring at a similar level in different organs/tissue, may lead to organ/tissue specific cancers, or indeed non-malignant disease – what is the basis for this differential response? We suggest that it is perhaps the precise location of damage, within the genome, that is a key factor. Finally, we draw attention to the requirement for reliable methods for identification and quantification of DNA adducts/modifications, and stress the need for these assays to be fully validated. Once these prerequisites are satisfied, measurement of DNA modifications may be helpful as a clinical parameter for treatment monitoring, risk group identification and development of prevention strategies.  相似文献   
994.
The binding property between a ligand and its receptor is very important for numerous biological processes. In this study, we developed a high epidermal growth factor receptor (EGFR)‐expression cell membrane chromatography (CMC) method to investigate the binding characteristics between EGFR and the ligands gefitinib, erlotinib, canertinib, afatinib, and vandetanib. Competitive binding analysis using gefitinib as the marker was used to investigate the interactions that occurred at specific binding sites on EGFR. The ability of displacement was measured from the HEK293‐EGFR/CMC column on the binding sites occupied by gefitinib for these ligands, which revealed the following order: gefitinib (KD, 8.49 ± 0.11 × 10?7 M) > erlotinib (KD, 1.07 ± 0.02 × 10?6 M) > canertinib (KD, 1.41 ± 0.07 × 10?6 M) > afatinib (KD, 1.80 ± 0.12 × 10?6 M) > vandetanib (KD, 1.99 ± 0.03 × 10?6 M). This order corresponded with the values estimated by frontal displacement analysis and the scores obtained with molecular docking. Furthermore, thermodynamic analysis indicated that the hydrogen bond or Van der Waals force was the main interaction force in the process of EGFR binding to all 5 ligands. Overall, these results demonstrate that a CMC method could be an effective tool to investigate the binding characteristics between ligands and receptors.  相似文献   
995.
996.
Industrial enzymatic reactions requiring 1,4-NAD(P)H2 to perform redox transformations often require convoluted coupled enzyme regeneration systems to regenerate 1,4-NAD(P)H2 from NAD(P) and recycle the cofactor for as many turnovers as possible. Renewed interest in recycling the cofactor via electrochemical means is motivated by the low cost of performing electrochemical reactions, easy monitoring of the reaction progress, and straightforward product recovery. However, electrochemical cofactor regeneration methods invariably produce adventitious reduced cofactor side products which result in unproductive loss of input NAD(P). We review various literature strategies for mitigating adventitious product formation by electrochemical cofactor regeneration systems, and offer insight as to how a successful electrochemical bioreactor system could be constructed to engineer efficient 1,4-NAD(P)H2-dependent enzyme reactions of interest to the industrial biocatalysis community.  相似文献   
997.
The isolation of polyclonal antibodies from the serum of immunized mammals has significantly contributed to scientific research and diagnosis. The fact that recent technologies allow the production of antibodies in the yolk of eggs laid by hens, has led to the development of an alternative method for antibody generation that is less stressful to animals. As hens are kept under almost all their natural conditions, antibodies are isolated from the collected eggs; this technology is expected to become an interesting alternative to the conventionally serum-based techniques that eventually require to sacrifice the animal.Here we present a modified protocol for the isolation of IgY antibodies from immunized chickens and provide comparison between two chicken breeds in relative to IgY yield per egg. Our results show the possibility of generating large quantities of highly pure IgY from chicken eggs and also show large differences in the yield of IgY production between the two studied breeds. The results of this work indicate that IgY technology can be used for the production of primary antibodies for immunological work and disease diagnosis.  相似文献   
998.
对来源于枯草芽孢杆菌菌株168(Bacillus subtilis 168)的壳聚糖酶编码基因进行了序列优化及全合成,并在毕赤酵母(Pichia pastoris)中实现了分泌表达,表达产物的蛋白质浓度达到0.30mg/ml。表达的壳聚糖酶最适p H为5.6,最适温度为55℃,比酶活达84.54U/ml。该酶在50℃及以下较稳定。利用该酶水解低脱乙酰度壳聚糖并使用超高效液相色谱-四极杆飞行时间质谱(ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry,UPLC-QTOF MS)对产物的组分进行了分离及鉴定。根据一级质谱信息,推测酶解产物中包含至少37种聚合度2~18,不同脱乙酰度的壳寡糖组分。综上,利用毕赤酵母分泌表达了来源于枯草芽孢杆菌菌株168的壳聚糖酶基因,利用表达产物水解制备了低脱乙酰度壳寡糖并对其组分进行了分析,可为后续壳寡糖结构与功能关系的研究提供参考。  相似文献   
999.
Knowledge about chemical communication in some vertebrates is still relatively limited. Squamates are a glaring example of this, even when recent evidences indicate that scents are involved in social and sexual interactions. In lizards, where our understanding of chemical communication has considerably progressed in the last few years, many questions about chemical interactions remain unanswered. A potential reason for this is the inherent complexity and technical limitations that some methodologies embody when analyzing the compounds used to convey information. We provide here a straightforward procedure to analyze lizard chemical secretions based on gas chromatography coupled to mass spectrometry that uses an internal standard for the semiquantification of compounds. We compare the results of this method with those obtained by the traditional procedure of calculating relative proportions of compounds. For such purpose, we designed two experiments to investigate if these procedures allowed revealing changes in chemical secretions 1) when lizards received previously a vitamin dietary supplementation or 2) when the chemical secretions were exposed to high temperatures. Our results show that the procedure based on relative proportions is useful to describe the overall chemical profile, or changes in it, at population or species levels. On the other hand, the use of the procedure based on semiquantitative determination can be applied when the target of study is the variation in one or more particular compounds of the sample, as it has proved more accurate detecting quantitative variations in the secretions. This method would reveal new aspects produced by, for example, the effects of different physiological and climatic factors that the traditional method does not show.  相似文献   
1000.
Plant volatile organic compounds (pVOCs) are being recognized as an important factor in plant–environment interactions. Both the type and amount of the emissions appear to be heavily affected by climate change. A range of studies therefore has been directed toward understanding pVOC emissions, mostly under laboratory conditions (branch/leaf enclosure). However, there is a lack of rapid, sensitive, and selective analytical methods, and therefore, only little is known about VOC emissions under natural, outdoor conditions. An increased sensitivity and the identification of taxon‐specific patterns could turn VOC analysis into a powerful tool for the monitoring of atmospheric chemistry, ecosystems, and biodiversity, with far‐reaching relevance to the impact of climate change on pVOCs and vice versa. This study for the first time investigates the potential of ion mobility spectrometry coupled to gas‐chromatographic preseparation (GC‐IMS) to dramatically increase sensitivity and selectivity for continuous monitoring of pVOCs and to discriminate contributing plant taxa and their phenology. Leaf volatiles were analyzed for nine different common herbaceous plants from Germany. Each plant turned out to have a characteristic metabolite pattern. pVOC patterns in the field would thus reflect the composition of the vegetation, but also phenology (with herbaceous and deciduous plants contributing according to season). The technique investigated here simultaneously enables the identification and quantification of substances characteristic for environmental pollution such as industrial and traffic emissions or pesticides. GC‐IMS thus has an enormous potential to provide a broad range of data on ecosystem function. This approach with near‐continues measurements in the real plant communities could provide crucial insights on pVOC‐level emissions and their relation to climate and phenology and thus provide a sound basis for modeling climate change scenarios including pVOC emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号