首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2155篇
  免费   430篇
  国内免费   101篇
  2024年   25篇
  2023年   85篇
  2022年   115篇
  2021年   138篇
  2020年   112篇
  2019年   131篇
  2018年   114篇
  2017年   108篇
  2016年   100篇
  2015年   91篇
  2014年   178篇
  2013年   142篇
  2012年   100篇
  2011年   151篇
  2010年   79篇
  2009年   105篇
  2008年   117篇
  2007年   98篇
  2006年   110篇
  2005年   72篇
  2004年   77篇
  2003年   60篇
  2002年   52篇
  2001年   25篇
  2000年   29篇
  1999年   32篇
  1998年   27篇
  1997年   21篇
  1996年   15篇
  1995年   19篇
  1994年   15篇
  1993年   16篇
  1992年   12篇
  1991年   18篇
  1990年   9篇
  1989年   13篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1982年   8篇
  1981年   7篇
  1980年   7篇
  1978年   5篇
  1976年   4篇
  1975年   2篇
  1973年   3篇
  1971年   3篇
排序方式: 共有2686条查询结果,搜索用时 15 毫秒
231.
Parasitic nematode infections of humans and livestock continue to impose a significant public health and economic burden worldwide. Murine models of intestinal nematode infection have proved to be relevant and tractable systems to define the cellular and molecular basis of how the host immune system regulates resistance and susceptibility to infection. While susceptibility to chronic infection is propagated by T helper cell type 1 cytokine responses (characterised by production of IL-12, IL-18 and interferon-gamma), immunity to intestinal-dwelling adult nematode worms is critically dependent on a type 2 cytokine response (controlled by CD4+T helper type 2 cells that secrete the cytokines IL-4, IL-5, IL-9 and IL-13). However, the immune effector mechanisms elicited by type 2 cytokines in the gut microenvironment that precipitate worm expulsion have remained elusive. This review focuses on new studies that implicate host intestinal epithelial cells as one of the dominant immune effector cells against this group of pathogens. Specifically, three recently identified type 2 cytokine-dependent pathways that could offer insights into the mechanisms of expulsion of parasitic nematodes will be discussed: (i) the intelectins, a new family of galactose-binding lectins implicated in innate immunity, (ii) the resistin-like molecules, a family of small cysteine-rich proteins expressed by multiple cell types, and (iii) cytokine regulation of intestinal epithelial cell turnover. Identifying how the mammalian immune response fights gastrointestinal nematode infections is providing new insights into host protective immunity. Harnessing these discoveries, coupled with identifying what the targets of these responses are within parasitic nematodes, offers promise in the design of a new generation of anti-parasitic drugs and vaccines.  相似文献   
232.
Siglecs are receptors on cells of the immune, haemopoietic, and nervous systems that recognize sialyl-glycans with differing preferences for sialic acid linkage and oligosaccharide backbone sequence. We investigate here siglec binding using microarrays of Lewis(x) (Le(x))- and 3'-sialyl-Le(x)-related probes with different sulphation patterns. These include sulphation at position 3 of the terminal galactose of Le(x), position 6 of the galactose of Le(x) and sialyl-Le(x), position 6 of N-acetylglucosamine of Le(x) and sialyl-Le(x), or both positions of sialyl-Le(x). Recombinant soluble forms of five siglecs have been investigated: human Siglec-7, -8, -9, and murine Siglec-F and CD22 (Siglec-2). Each siglec has a different binding pattern. Unlike two C-type lectins of leukocytes, L-selectin and Langerin, which also bind to sulphated analogues of sialyl-Le(x), the siglecs do not give detectable binding signals with sulphated analogues that are lacking sialic acid. The sulphate groups modulate, however, positively or negatively the siglec binding intensities to the sialyl-Le(x) sequence.  相似文献   
233.
Immune modulation by mesenchymal stem cells   总被引:18,自引:0,他引:18  
Mesenchymal stem cells (MSCs) have been shown to suppress activation of T cells both in vivo and in vitro. In vivo, this may be a way for the body to maintain homeostasis and inhibit immune activation in distinct compartments, such as the bone marrow and the interface between mother and fetus. MSCs modulate the immune function of the major cell populations involved in alloantigen recognition and elimination, including antigen presenting cells, T cells, and natural killer cells. The molecular mechanism that mediates the immunosuppressive effect of MSCs is not completely understood.  相似文献   
234.
Parenteral immunization of transgenic mouse models of Alzheimer disease (AD) with synthetic amyloid beta-peptide (Abeta) prevented or reduced Abeta deposits and attenuated their memory and learning deficits. A clinical trial of immunization with synthetic Abeta, however, was halted due to brain inflammation, presumably induced by a toxic Abeta, T-cell- and/or Fc-mediated immune response. Another issue relating to such immunizations is that some AD patients may not be able to raise an adequate immune response to Abeta vaccination due to immunological tolerance or age-associated decline. Because peripheral administration of antibodies against Abeta also induced clearance of amyloid plaques in the model mice, injection of humanized Abeta antibodies has been proposed as a possible therapy for AD. By screening a human single-chain antibody (scFv) library for Abeta immunoreactivity, we have isolated a scFv that specifically reacts with oligomeric Abeta as well as amyloid plaques in the brain. The scFv inhibited Abeta amyloid fibril formation and Abeta-mediated cytotoxicity in vitro. We have tested the efficacy of the human scFv in a mouse model of AD (Tg2576 mice). Relative to control mice, injections of the scFv into the brain of Tg2576 mice reduced Abeta deposits. Because scFvs lack the Fc portion of the immunoglobulin molecule, human scFvs against Abeta may be useful to treat AD patients without eliciting brain inflammation.  相似文献   
235.

Background

It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo.

Methods and results

Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury.

Conclusions

These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.  相似文献   
236.
The use of new preventive approaches such as immunostimulants to reduce stress and mortalities, to maintain good health of cultured organisms and to stimulate the non-specific defence mechanism, is becoming increasingly important in aquaculture. Yet detailed analysis reveals that in most experiments the validity of some conclusions with respect to the benefit of immunostimulation is still doubtful, especially in invertebrates. The use of standardized trials under controlled rearing conditions, complemented with fundamental research on defence mechanisms can provide unequivocal evidence for the beneficial effects of immunostimulants in reducing invertebrate susceptibility to diseases or infections. This study investigated the use of small amounts of baker's yeast Saccharomyces cerevisiae and glucan particles (obtained from baker's yeast) in gnotobiotic Artemia to overcome the pathogenicity of two organisms: Vibrio campbellii and V proteolyticus. Artemia supplemented with small quantities of a yeast strain presenting higher concentrations of beta-glucans or with glucan particles seemed to completely resist the detrimental effects of both pathogens. The higher amount and/or availability of beta-glucans in that yeast might play an essential role in such protection, as most probably glucans stimulate the immune response of the nauplii.  相似文献   
237.
The present study reports the quantitative analysis of the spatio-temporal development of nodavirus infection and corresponding immune response in juvenile Atlantic halibut (Hippoglossus hippoglossus) challenged by intramuscular injection of nodavirus. Novel quantitative real-time RT-PCR protocols were applied to evaluate the absolute copy numbers of nodavirus RNA2 (RNA2) and secretory-IgM mRNA (sec-igmicro) in the eye, brain, mid/posterior kidney and spleen sampled over a period of 81 days. In the eye and brain, levels of both RNA2 and sec-igmicro increased significantly early in the infection. In the spleen and mid/posterior kidney, both RNA2 and sec-igmicro were detected but the levels remained unchanged during the experimental period. The levels of RNA2 and sec-igmicro in the eye and brain were strongly correlated (P<0.0001). Nodavirus antigen was demonstrated by immunohistochemistry (IHC) in the retina of eyes from a relatively few fish from day 34 post challenge (brain not examined), but not at any time in the spleen and anterior kidney. By IHC, IgM+ cells were observed in conjunction with nodavirus positive IHC labelling in the retina. In both the spleen and anterior kidney, the number of IgM+ cells increased from day 3 post challenge. By conventional real-time RT-PCR, RNA2 was only sporadically demonstrated in the posterior intestine, heart and gills. ELISA analysis revealed a nodavirus specific antibody response in serum that was significant from day 18 post challenge. No clinical signs or mortality related to nodavirus infection were observed in the challenged halibut. The results suggest that the nodavirus infection induced a significant antibody response through activation of B-cells in the kidney and spleen, and involved a substantial migration of antibody-secreting cells to infected peripheral tissues.  相似文献   
238.
Using validation sets for outcomes can greatly improve the estimation of vaccine efficacy (VE) in the field (Halloran and Longini, 2001; Halloran and others, 2003). Most statistical methods for using validation sets rely on the assumption that outcomes on those with no cultures are missing at random (MAR). However, often the validation sets will not be chosen at random. For example, confirmational cultures are often done on people with influenza-like illness as part of routine influenza surveillance. VE estimates based on such non-MAR validation sets could be biased. Here we propose frequentist and Bayesian approaches for estimating VE in the presence of validation bias. Our work builds on the ideas of Rotnitzky and others (1998, 2001), Scharfstein and others (1999, 2003), and Robins and others (2000). Our methods require expert opinion about the nature of the validation selection bias. In a re-analysis of an influenza vaccine study, we found, using the beliefs of a flu expert, that within any plausible range of selection bias the VE estimate based on the validation sets is much higher than the point estimate using just the non-specific case definition. Our approach is generally applicable to studies with missing binary outcomes with categorical covariates.  相似文献   
239.
240.
A CpG-enriched recombinant plasmid (pUC18-CpG) as an adjuvant of FMD killed vaccine was tested for immunization and vaccination challenge in a porcine model. Our preliminary results had indicated that the recombinant plasmid could enhance the humoral immune response triggered by the traditional oil-adjuvant vaccine after the initial inoculation. A subsequent vaccination-challenge test showed an increased PD(50) value. Thus, coadministration of the recombinant plasmid with the oil-adjuvant vaccine helped illicit an immune response earlier than that elicited by giving the vaccine alone. Our results showed that pUC18-CpG can be a potent immunoadjuvant for the traditional FMD killed vaccine and can greatly enhance the traditional vaccine's efficacy when given in combination with it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号