首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13392篇
  免费   706篇
  国内免费   1114篇
  2023年   152篇
  2022年   217篇
  2021年   243篇
  2020年   324篇
  2019年   414篇
  2018年   331篇
  2017年   272篇
  2016年   295篇
  2015年   282篇
  2014年   618篇
  2013年   910篇
  2012年   538篇
  2011年   482篇
  2010年   426篇
  2009年   541篇
  2008年   574篇
  2007年   649篇
  2006年   624篇
  2005年   524篇
  2004年   485篇
  2003年   482篇
  2002年   495篇
  2001年   409篇
  2000年   313篇
  1999年   344篇
  1998年   338篇
  1997年   283篇
  1996年   299篇
  1995年   269篇
  1994年   241篇
  1993年   212篇
  1992年   230篇
  1991年   266篇
  1990年   211篇
  1989年   163篇
  1988年   175篇
  1987年   138篇
  1986年   152篇
  1985年   165篇
  1984年   143篇
  1983年   90篇
  1982年   146篇
  1981年   130篇
  1980年   139篇
  1979年   90篇
  1978年   82篇
  1977年   61篇
  1976年   51篇
  1974年   35篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
931.
The endoglycosidase (EndoS and its glycosynthase mutants D233A, D233Q) gene was fused with cellulose binding domain (CBD) using pET-35b vector and the fusion enzymes were successfully expressed in Escherichia coli. Then a simplified approach for one-step immobilization and purification of EndoS enzymes using cellulose as matrices were developed and excellent loading efficiency (81–90%) was achieved in optimal condition. The cellulose immobilized CBD-EndoS and the glycosynthase mutants presented high catalytic activity and were successfully applied in a two-step antibody Fc N-glycan remodeling, generating a therapeutic antibody with homogeneous glycoform in high efficiency. The cellulose immobilized CBD-EndoS and its mutants (D233A and D233Q) displayed excellent storage stability when stored at 4 degrees for one month. Reusability studies demonstrated that the cellulose immobilized CBD-EndoS and its mutants could be recycled for five times without obvious activity loss.  相似文献   
932.
This study presents a systematic modeling approach for examining the efficiency of the MEOR process based on in situ selective plugging by bacterial biopolymer production and optimization of the nutrient injection strategy to yield the maximum oil recovery. This study focuses on modeling in situ selective plugging by the bacterial biopolymer dextran that is generated by Leuconostoc mesenteroides. Bacterial growth and dextran generation were described by a stoichiometric equation and kinetic reactions using batch model simulation. Based on the parameters for permeability reduction obtained from the sandpack model, the MEOR process was implemented in a pilot-scale system that included a highly permeable thief zone in a low-permeability reservoir. The base MEOR design yielded a 61.5% improvement of the recovery factor compared to that obtained with waterflooding. The parametric simulations revealed that the recovery efficiency was influenced by the amount of dextran, as well as the distribution of dextran, and thus, the injection strategy is critical for controlling the dextran distribution. By incorporating the results from the sensitivity analysis and optimization to determine the optimal design parameters, a 36.7% improvement of the oil recovery was achieved with the optimized MEOR process in comparison with the base case.  相似文献   
933.
This paper proposes a novel in vitro exposure system operating at millimeter‐wave (mmWave) 28 GHz, one of the frequency bands under consideration for fifth generation (5G) communication. We employed the field uniformity concept along cross‐sectional observation planes at shorter distances from the radiation antenna for better efficiency and a small‐size system. A choke‐ring antenna was designed for this purpose in consideration of a wider beamwidth (BW) and a symmetric far‐field pattern across three principal planes. The permittivity of Dulbecco's modified Eagle's medium solution was measured to examine the specific absorption rate (SAR) of the skin cell layer inside a Petri dish model for a three‐dimensional (3D) cell culture in vitro experiment. The best deployment of Petri dishes, taking into account a geometrical field symmetry, was proposed. Local SAR values within the cell layer among the Petri dishes were determined with different polarization angles. It was determined that this polarization effect should be considered when the actual exposure and deployment were conducted. We finally proposed an in vitro exposure system based on the field uniformity including downward exposure from an antenna for 3D cell culture experiments. A small‐size chamber system was obtained, and the size was estimated using the planar near‐field chamber design rule. Bioelectromagnetics. 2019;40:445–457. © 2019 Bioelectromagnetics Society  相似文献   
934.
935.
Parkinson's disease (PD) is a neurodegenerative disorder involving progressive deterioration of dopaminergic neurons. Although few genetic markers for familial PD are known, the etiology of sporadic PD remains poorly understood. Microarray data was analysed for induced pluripotent stem cells (iPSCs) derived from PD patients and mature neuronal cells (mDA) differentiated from these iPSCs. Combining expression and semantic similarity, a highly-correlated PD interactome was constructed that included interactions of established Parkinson's disease marker genes. A novel three-way comparative approach was employed, delineating topologically and functionally important genes. These genes showed involvement in pathways like Parkin-ubiquitin proteosomal system (UPS), immune associated biological processes and apoptosis. Of interest are three genes, eEF1A1, CASK, and PSMD6 that are linked to PARK2 activity in the cell and thereby form attractive candidate genes for understanding PD. Network biology approach delineated in this study can be applied to other neurodegenerative disorders for identification of important genetic regulators.  相似文献   
936.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   
937.
Doramapimod (BIRB-796) is widely recognized as one of the most potent and selective type II inhibitors of human p38α mitogen-activated protein kinase (MAPK); however, the understanding of its binding mechanism remains incomplete. Previous studies indicated high affinity of the ligand to a so-called allosteric pocket revealed only in the ‘out’ state of the DFG motif (i.e. Asp168-Phe169-Gly170) when Phe169 becomes fully exposed to the solvent. The possibility of alternative binding in the DFG-in state was hypothesized, but the molecular mechanism was not known. Methods of bioinformatics, docking and long-time scale classical and accelerated molecular dynamics have been applied to study the interaction of Doramapimod with the human p38α MAPK. It was shown that Doramapimod can bind to the protein even when the Phe169 is fully buried inside the allosteric pocket and the kinase activation loop is in the DFG-in state. Orientation of the inhibitor in such a complex is significantly different from that in the known crystallographic complex formed by the kinase in the DFG-out state; however, the Doramapimod’s binding is followed by the ligand-induced conformational changes, which finally improve accommodation of the inhibitor. Molecular modelling has confirmed that Doramapimod combines the features of type I and II inhibitors of p38α MAPK, i.e. can directly and indirectly compete with the ATP binding. It can be concluded that optimization of the initial binding in the DFG-in state and the final accommodation in the DFG-out state should be both considered at designing novel efficient type II inhibitors of MAPK and homologous proteins.

Communicated by Ramaswamy H. Sarma  相似文献   

938.
Parkinson's disease (PD) is a movement disorder caused by the progressive loss of dopaminergic neurons. Natural antioxidants and plant extracts with neuroprotective properties offer a promising new therapeutic approach for PD patients, but a suitable large‐scale screening system is required for their discovery and preclinical analysis. Here we used the red flour beetle (Tribolium castaneum ) as a whole‐animal screening system for the detection and characterization of neuroprotective substances. Paraquat was added to the diet of adult beetles to induce PD‐like symptoms, which were quantified using a novel positive geotaxis behavioral assay. These paraquat‐induced behavioral changes were reduced in beetles fed on diets supplemented with l‐ dihydroxyphenylalanine, ascorbic acid, curcumin, hempseed flour, or the Chinese herb gou‐teng. T. castaneum is, therefore, a valuable model for the screening of neuroprotective substances in chemical libraries and plant extracts and could be developed as a model for the preclinical testing of therapeutic candidates for the treatment of neurodegenerative diseases, such as PD.  相似文献   
939.
Visceral leishmaniasis (VL) is a deadly parasitic infection which affects poorest to poor population living in the endemic countries. Increasing resistant to existing drugs, disease burden and a significant number of deaths, necessitates the need for an effective vaccine to prevent the VL infection. This study employed a combinatorial approach to develop a multi-epitope subunit vaccine by exploiting Leishmania donovani membrane proteins. Cytotoxic T- and helper T-lymphocyte binding epitopes along with suitable adjuvant and linkers were joined together in a sequential manner to design the subunit vaccine. The occurrence of B-cell and IFN-γ inducing epitopes approves the ability of subunit vaccine to develop humoral and cell-mediated immune response. Physiochemical parameters of vaccine protein were also assessed followed by homology modeling, model refinement and validation. Moreover, disulfide engineering was performed for the increasing stability of the designed vaccine and molecular dynamics simulation was performed for the comparative stability purposes and to conform the geometric conformations. Further, molecular docking and molecular dynamics simulation study of a mutated and non-mutated subunit vaccine against TLR-4 immune receptor were performed and respective complex stability was determined. In silico cloning ensures the expression of designed vaccine in pET28a(+) expression vector. This study offers a cost-effective and time-saving way to design a novel immunogenic vaccine that could be used to prevent VL infection.

Communicated by Ramaswamy H. Sarma  相似文献   

940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号