首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   47篇
  国内免费   4篇
  706篇
  2023年   9篇
  2022年   10篇
  2021年   32篇
  2020年   23篇
  2019年   26篇
  2018年   33篇
  2017年   19篇
  2016年   26篇
  2015年   39篇
  2014年   84篇
  2013年   74篇
  2012年   74篇
  2011年   85篇
  2010年   64篇
  2009年   22篇
  2008年   21篇
  2007年   15篇
  2006年   15篇
  2005年   7篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
排序方式: 共有706条查询结果,搜索用时 15 毫秒
61.
The growing use of fluorescent biosensors to directly probe the spatiotemporal dynamics of biochemical processes in living cells has revolutionized the study of intracellular signaling. In this review, we summarize recent developments in the use of biosensors to illuminate the molecular details of G-protein-coupled receptor (GPCR) signaling pathways, which have long served as the model for our understanding of signal transduction, while also offering our perspectives on the future of this exciting field. Specifically, we highlight several ways in which biosensor-based single-cell analyses are being used to unravel many of the enduring mysteries that surround these diverse signaling pathways.  相似文献   
62.
The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments.  相似文献   
63.
Based on the conjugate strategy, two neutral 99mTc labeled 2-(1-(6-(dialkylamino)naphthalen-2-yl)ethylidene)malononitrile (DDNP) and 1-(6-(dialkylamino)naphthalen-2-yl)ethanone (ENE) derivatives, and their corresponding rhenium complexes were synthesized. In vitro fluorescent staining indicated that the corresponding rhenium derivatives selectively stained the β-amyloid (Aβ) plaques in the brain sections of AD model mice with low background. Compared with FDDNP and FENE, the affinities of the corresponding rhenium derivatives to Aβ aggregates decreased about 10-14-fold. In vivo biodistribution experiments in normal mice showed that 99mTc-MAMA-ENE displayed medium initial brain uptake (0.65 %ID/g at 2 min) with a reasonable washout from the brain (0.19 %ID/g at 2 h) while 99mTc-MAMA-DDNP showed a low brain uptake (0.28 %ID/g at 2 min). Further optimize these 99mTc-labeled tracers in order to improve their binding affinities to Aβ plaques and diffusion through the blood brain barrier may generate useful imaging agents for SPECT.  相似文献   
64.
Characterising the protein signatures in tumours following vascular-targeted therapy will help determine both treatment response and resistance mechanisms. Here, mass spectrometry imaging and MS/MS with and without ion mobility separation have been used for this purpose in a mouse fibrosarcoma model following treatment with the tubulin-binding tumour vascular disrupting agent, combretastatin A-4-phosphate (CA-4-P). Characterisation of peptides after in situ tissue tryptic digestion was carried out using Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) and Matrix-Assisted Laser Desorption/Ionisation-Ion Mobility Separation-Mass Spectrometry Imaging (MALDI IMS-MSI) to observe the spatial distribution of peptides. Matrix-Assisted Laser Desorption/Ionisation-Ion Mobility Separation-Tandem Mass Spectrometry (MALDI-IMS-MS/MS) of peaks was performed to elucidate any pharmacological responses and potential biomarkers. By taking tumour samples at a number of time points after treatment gross changes in the tissue were indicated by changes in the signal levels of certain peptides. These were identified as arising from haemoglobin and indicated the disruption of the tumour vasculature. It was hoped that the use of PCA-DA would reveal more subtle changes taking place in the tumour samples however these are masked by the dominance of the changes in the haemoglobin signals.  相似文献   
65.
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.  相似文献   
66.

Background

Assessment of ventricular dyssynchrony in patients with heart failure is used for selecting candidates for cardiac resynchronization therapy (CRT). The patterns of regional distribution of dyssynchrony in a population with LBBB with and without heart failure have not been well delineated. This aspect forms the object of the study.

Methods

Tissue Doppler Imaging (TDI) data of consecutive patients with heart failure and LBBB (Group A) was compared with those with LBBB and normal LV function (Group B). All patients had standard 2D-echocardigraphic examination and TDI. Tissue velocity curves obtained by placing sample volumes in opposing basal and mid segments of septal, lateral, inferior, anterior and posterior walls were analyzed. Inter ventricular dyssynchrony (IVD) was assessed by the difference between aortic and pulmonary pre ejection intervals. LV dyssynchrony (LVD) was assessed by the difference in times to peak velocity. A delay of ≥ 40 msec was considered significant for presence of IVD and LVD.

Results

There were 103 patients in Group A and 25 in Group B. The mean QRS duration and PR intervals respectively were 146 ± 25 vs. 152±20 msec and 182± 47 vs. 165±36 msec. (p=NS) LVEF in the 2 groups were (32 ± 6 % vs. 61± 11%; p< 0.01). Prevalence of dyssynchrony in the HF group compared to Group B was 72% vs. 16%, (P< 0.01). Lateral wall dyssynchrony in the 2 groups was 37% vs. 0% (p< 0.01) while septal dyssynchrony was 16% vs. 16% (p- NS).

Conclusions

72% of heart failure patients with LBBB have documented dyssynchrony on TDI, which has a heterogeneous regional distribution. Dyssynchrony may be seen in LBBB and normal hearts but it is does not involve the lateral wall. Septal dyssynchrony in heart failure patients may not have the same significance as lateral wall delay.  相似文献   
67.
The lifetime of nicotinic acetylcholine receptors (AChRs) in neuromuscular junctions (NMJs) is increased from <1 day to >1 week during early postnatal development. However, the exact timing of AChR stabilization is not known, and its correlation to the concurrent embryonic to adult AChR channel conversion, NMJ remodeling, and neuromuscular diseases is unclear. Using a novel time lapse in vivo imaging technology we show that replacement of the entire receptor population of an individual NMJ occurs end plate-specifically within hours. This makes it possible to follow directly in live animals changing stabilities of end plate receptors. In three different, genetically modified mouse models we demonstrate that the metabolic half-life values of synaptic AChRs increase from a few hours to several days after postnatal day 6. Developmental stabilization is independent of receptor subtype and apparently regulated by an intrinsic muscle-specific maturation program. Myosin Va, an F-actin-dependent motor protein, is also accumulated synaptically during postnatal development and thus could mediate the stabilization of end plate AChR.  相似文献   
68.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na+ overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na+/H+ exchanger isoform 1) in dendrites presents a major pathway for Na+ overload. Neuronal dendrites exhibited higher pHi regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70–200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na+i accumulation, swelling, and a concurrent loss of Ca2+i homeostasis. The Ca2+i overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na+/Ca2+ exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca2+ homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na+ entry and subsequent Na+/Ca2+ exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.  相似文献   
69.
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.  相似文献   
70.
Despite a positive correlation between chronic kidney disease and atherosclerosis, the causative role of uremic toxins in leukocyte-endothelial interactions has not been reported. We thus examined the effects of indoxyl sulfate, a uremic toxin, on leukocyte adhesion to activated endothelial cells and the underlying mechanisms. Pretreatment of human umbilical vein endothelial cells (HUVEC) with indoxyl sulfate significantly enhanced the adhesion of human monocytic cells (THP-1 cell line) to TNF-α-activated HUVEC under physiological flow conditions. Treatment with indoxyl sulfate enhanced the expression level of E-selectin, but not that of ICAM-1 or VCAM-1, in HUVEC. Indoxyl sulfate treatment enhanced the activation of JNK, p38 MAPK, and NF-κB in TNF-α-activated HUVEC. Inhibitors of JNK and NF-κB attenuated indoxyl sulfate-induced E-selectin expression in HUVEC and subsequent THP-1 adhesion. Furthermore, treatment with the NAD(P)H oxidase inhibitor apocynin and the glutathione donor N-acetylcysteine inhibited indoxyl sulfate-induced enhancement of THP-1 adhesion to HUVEC. Next, we examined the in vivo effect of indoxyl sulfate in nephrectomized chronic kidney disease model mice. Indoxyl sulfate-induced leukocyte adhesion to the femoral artery was significantly reduced by anti-E-selectin antibody treatment. These findings suggest that indoxyl sulfate enhances leukocyte-endothelial interactions through up-regulation of E-selectin, presumably via the JNK- and NF-κB-dependent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号