首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2281篇
  免费   90篇
  国内免费   187篇
  2558篇
  2023年   13篇
  2022年   17篇
  2021年   25篇
  2020年   48篇
  2019年   71篇
  2018年   78篇
  2017年   60篇
  2016年   60篇
  2015年   77篇
  2014年   99篇
  2013年   134篇
  2012年   96篇
  2011年   99篇
  2010年   111篇
  2009年   147篇
  2008年   120篇
  2007年   122篇
  2006年   117篇
  2005年   82篇
  2004年   61篇
  2003年   75篇
  2002年   77篇
  2001年   52篇
  2000年   37篇
  1999年   40篇
  1998年   37篇
  1997年   37篇
  1996年   44篇
  1995年   41篇
  1994年   38篇
  1993年   35篇
  1992年   34篇
  1991年   31篇
  1990年   30篇
  1989年   21篇
  1988年   25篇
  1987年   31篇
  1986年   24篇
  1985年   32篇
  1984年   39篇
  1983年   21篇
  1982年   24篇
  1981年   19篇
  1980年   14篇
  1979年   16篇
  1978年   9篇
  1977年   6篇
  1976年   7篇
  1973年   6篇
  1971年   4篇
排序方式: 共有2558条查询结果,搜索用时 0 毫秒
141.
Intracellular pH has recently been shown to increase during parthenogenetic activation of the porcine oocyte. In the following set of experiments, intracellular pH was monitored during activation and pronuclear development was assessed following activation treatments with calcium, in the absence of calcium, and in oocytes loaded with the calcium chelator BAPTA-AM in calcium-free medium. Intracellular pH increase was not different among groups when treating with 7% ethanol or 50 microM calcium ionophore, or during treatment with thimerosal for 12 or 25 min. Activation with thimerosal (200 microM, 12 min) followed by 8 mM dithiothreitol (DTT, 30 min) resulted in a decreased pronuclear development in calcium-free medium with or without BAPTA-AM loaded oocytes as compared to controls. Activation with 50 microM calcium ionophore resulted in pronuclear development that was different between the calcium-free and BAPTA-AM loaded oocytes in calcium-free medium. Similar incidences of pronuclear formation were observed in all ethanol treatment groups. It was concluded that external calcium as well as large changes in intracellular free calcium are not necessary for the increase in intracellular pH, but normal intracellular calcium signaling is critical for normal levels of pronuclear development. Finally, oocytes were measured for intracellular pH changes for 30 min following subzonal sperm injection. Intracellular pH did not increase, although pronuclear formation was observed 6 hr post SUZI. This suggested that major differences were still present between sperm-induced and parthenogenetic activation of the porcine oocyte.  相似文献   
142.
Glutathione (GSH), a general antioxidant and detoxifying compound, is the most abundant thiol-containing peptide in the central nervous system. It has been earlier shown to regulate the functions of glutamate receptors and to possess specific binding sites in both neurons and glial cells. The possible involvement of disulfide bonds, cysteinyl, arginyl, lysyl, glutamyl, and aspartyl residues in the binding of tritiated GSH to specific sites in pig cerebral cortical synaptic membranes was now studied after covalent modification of membrane proteins. Treatment of synaptic membranes with the thiol-modifying reagents 5,5-dithio-bis(2-nitrobenzoate) (DTNB) and 4,4-dithiodipyridine (DDP) dramatically enhanced the binding of [3H]GSH in a dose-dependent manner. Dithiothreitol (DTT) alone reduced the binding, but pretreatment of the membranes with DTT potentiated the enhancing effect of DTNB. On the other hand, when the modification with DTNB was followed by treatment with DTT, the enhancement by DTNB was completely reversed. N-ethylmaleimide, a thiol alkylating agent, and phenylisothiocyanate, a thiol- and amino-group modifying compound, reduced the binding, and their effects were additive. The guanidino-modifying agent phenylglyoxal reduced the binding but the carboxyl-modifying reagent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide had no significant effect. The results indicate that cysteinyl side chains and disulfide bonds are essential in the binding of GSH to membrane proteins and that arginyl and lysyl side chains may also be directly involved in this process.  相似文献   
143.
We report here original properties of a porcine trophectoderm cell line, TBA B4-3, that developed a polarized phenotype with high transepithelial electrical resistance (TER) values and functional tight junctions (TJs) when grown on a microporous membrane. We found that treatment of polarized TBA B4-3 cells with a strong protein kinase C (PKC) agonist, phorbol 12-myristate-13-acetate (PMA), induced 3-4 days later a transient interferon-gamma (IFN-gamma) mRNA expression and vectorial IFN-gamma protein secretion toward the apical side of the monolayer. Exposure of TBA B4-3 cells to PMA first resulted in a rapid and profound disorganization of the monolayer structure mainly characterized by the appearance of multilayered polyp-like foci structures, a strong decrease of the TER, and a increase of permeability correlated with changes in the organization and localization of the TJ-associated proteins (ZO-1 and occludin) and filamentous actin (f-actin). After PMA removal, spontaneous return to the initial polarized monolayer state occurred, characterized by TER rising to prestimulation values, TJ protein relocalization, and multilayered cell structures fading. This return was strictly correlated with transient IFN-gamma gene induction. Our report represents the first example of an inducible expression of IFN-gamma by a polarized epithelial cell. After PMA treatment, the close correlation between establishment of cell polarity and IFN-gamma gene expression suggests a link between these phenomena. This also suggests a novel biological mechanism by which transient and reversible disorganization of a polarized monolayer of epithelial cells could trigger regulated expression of a cytokine gene by these cells.  相似文献   
144.
In recent studies, we could demonstrate a myocardial dysfunction induced by homologous platelets in ischemic and reperfused guinea pig hearts. Aim of the current study was to find out whether or not this is a phenomenon specific for platelets isolated from guinea pigs and to further examine the mechanisms of a possible cardiodepressive effect of human platelets. Isolated guinea pig hearts were exposed to a 30 min low-flow ischemia (1 ml/min) and reperfused. Human thrombocytes were administered as bolus (20.000 thrombocytes/microl perfusion buffer) in the 15(th) min of ischemia or in the 1(st) or 5(th) min of reperfusion in the presence of thrombin. Recovery of external heart work (REHW) and intracoronary platelet retention (RET) were quantified in percent. In additional experiments, the GPIIb/IIIa-blocker tirofiban (10 microg/ml perfusion buffer) or the radical scavenger superoxide dismutase (SOD-10 U/ml perfusion buffer) were added. Platelet application in the absence of tirofiban, either during ischemia (REHW 75.4 +/- 4%, RET 22.2 +/- 2%) or the 1st min (REHW 71.6 +/- 1%, RET 31.2 +/- 2%) or the 5th min of reperfusion (REHW 63.2 +/- 4%, RET 40.5 +/- 1%) led to a significant reduction of REHW and a significant increase of RET. The coapplication of tirofiban, on the other hand, prevented RET at all three times of platelet application (1.1 +/- 1.7%, 0% or 2.1 +/- 1.2%, respectively). An improvement of REHW, however, could only be noticed during ischemia (89 +/- 2%), whereas coapplication of tirofiban in early (72.9 +/- 3%) or in late reperfusion (74.6 +/- 2%) did not lead to a significant increase of REHW. Coapplication of SOD, on the other hand, significantly improved REHW in early (88.1 +/- 1) or late (95.9 +/- 1) reperfusion but not during ischemia (83.5 +/- 2). Corresponding to REHW, RET was changed significantly by coapplication of SOD during early (1 +/- 2%) or late (0%) reperfusion but not during ischemia (21.1 +/- 4%). We conclude that human thrombocytes are able to induce a myocardial dysfunction in ischemic and reperfused guinea pig hearts mediated by reactive oxygen species and independent of intracoronary platelet adhesion.  相似文献   
145.
Various mammalian tissues contain a tissue-bound amine oxidizing enzyme distinct from mitochondrial outer membrane enzyme, monoamine oxidase (MAO, EC 1.4.3.4), termed semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6). An increase in SSAO activity was found in patients suffering from vascular disorders such as diabetes and diabetic complications. It has previously been shown that 2-bromoethylamine (2-BEA) is a potent, and selective suicidal inhibitor of tissue-bound SSAO. The aim of this study was to investigate the interaction of this suicidal SSAO inhibitor with the tissue-bound enzyme in guinea pig lung, kidney, stomach, and heart homogenates. The conditions necessary for this inhibitor to titrate the concentrations of this enzyme were also determined. 2-BEA appears to interact with SSAO, as reported previously for this enzyme from different sources, in a manner consistent with an irreversible, "suicide" reaction. Because of this property, 2-BEA could be used to titrate the concentrations of SSAO active centers in these tissues under the appropriate conditions employed. Although some possible non-specific binding of the inhibitor to sites other than the active center of the enzyme, metabolism of this inhibitor and/or presence of enzyme subtypes was hypothesized, the molecular characteristics of SSAO in these tissues (Km, Vmax values, enzyme efficiencies, approximate enzyme concentrations, and molecular turnover numbers) towards the substrate kynuramine (0.1 mM) at pH 7.4 and 37 degrees C have been estimated.  相似文献   
146.
In previous works we demonstrated that 2-methyl-1,4-naphthoquinone (menadione) causes a marked increase in the force of contraction of guinea pig and rat isolated atria. This inotropic effect was significantly higher in the guinea pig than in the rat and was strictly related to the amount of superoxide anion (O(2)(*-)), generated as a consequence of cardiac menadione metabolism through mitochondrial NADH-ubiquinone oxidoreductase. The present study was designed to further elucidate the basis of these quantitatively different positive inotropic responses. To this purpose, we measured O(2)(*-) and hydrogen peroxide (H(2)O(2)) produced by mitochondria isolated from guinea pig and rat hearts in the presence of 20 microM menadione. Moreover, we evaluated the menadione detoxification activity (DT-diaphorase) and the antioxidant defences of guinea pig and rat hearts, namely their GSH/GSSG content, Cu/Zn- and Mn-dependent superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) activities. Our results indicate that DT-diaphorase activity and glutathione levels were similar in both animal species. By contrast, guinea pig mitochondria produced greater amounts of O(2)(*-) and H(2)O(2) than those of rat heart. This is probably due to both the higher Mn-SOD activity (2.93 +/- 0.02 vs. 1.95 +/- 0.06 units/mg protein; P < 0.05) and to the lower Gpx activity (10.09 +/- 0.30 vs. 32.67 +/- 1.02 units/mg protein; P < 0.001) of guinea pig mitochondria. A lower CAT activity was also observed in guinea pig mitochondria (2.40 +/- 0.80 vs. 6.13 +/- 0.20 units/mg protein; P < 0.01). Taken together, these data provide a rational explanation for the greater susceptibility of guinea pig heart to the toxic effect of menadione: because of the greater amount of O(2)(*-) generated by the quinone and the higher mitochondrial Mn-SOD activity, guinea pig heart is exposed to more elevated concentrations of H(2)O(2) that is less efficiently detoxified, because of lower Gpx and CAT levels of mitochondria.  相似文献   
147.
Genistein is an isoflavone with potent inhibitory activity on protein tyrosine kinase. Previous studies have shown that genistein has additional effects, among which the direct blocking effects on various ionic channels have recently been disclosed. Using whole-cell voltage clamp and current clamp techniques, we demonstrate that micromolar concentrations of genistein dose-dependently and reversibly inhibit the inward rectifying K(+) current, and depolarize the resting membrane potential, resulting in abnormal automaticity in guinea pig ventricular myocytes. Interestingly, another potent tyrosine kinase inhibitor, tyrphostin 51, did not produce the same inhibitory effect, while the inactive analogue of genistein, daidzein, had a similar blocking effect. We suggest that genistein directly blocks the inward rectifying K(+) current in ventricular myocytes, and one should be cautious of its pro-arrhythmic effect in clinical use.  相似文献   
148.
Porcine membrane cofactor protein (pMCP) is abundantly expressed throughout the body with particularly strong expression on the vascular endothelia. Previous studies demonstrated that the promoter of the pMCP gene induced efficient expression of a human complement regulatory protein, decay-accelerating factor (DAF; CD55), in transgenic mice. In the present study, we tried to produce transgenic pigs with two hybrid genes, 0.9/hDAF and 5.4/hDAF, which were composed of human DAF (hDAF) gene regulated under pMCP promoters of different lengths (0.9 and 5.4 kb). Five live founder transgenic pigs were obtained only with the 0.9/hDAF construct. Although, four founder pigs transmitted the transgene to the second generation, the transmission rates varied among founders. We examined the expression of hDAF in tissues of descendants of two lines (Dm1 and Dm4). Human DAF specific RNAs were confirmed by an RT-PCR analysis in all organs examined. Levels of hDAF protein in the organs from the descendants of Dm1 line were higher than those in the corresponding human organs as determined by enzyme-linked immunosorbent assay. Immunohistochemical studies showed that the tissue distribution of hDAF in the descendants of both lines was similar to that of endogenous pMCP. The expression level of hDAF on the vascular endothelial cells in Dm1 line was twice that on the corresponding human cells. We tested whether proinflammatory cytokines upregulate an efficiency of pMCP promoter on hDAF expression in transgenic pigs. Although the expression of hDAF on the human endothelial cells increased with a combination of cytokines, tumor necrosis factor alpha and interferon-gamma, no cytokine-induced upregulation was seen in the cells of transgenic pigs. The endothelial cells from transgenic pigs exhibited high resistance to the human serum-mediated cytolysis.  相似文献   
149.
AIMS: To investigate the effect of a therapeutic and sub-therapeutic chlortetracycline treatment on tetracycline-resistant Salmonella enterica serovar Typhimurium DT104 and on the commensal Escherichia coli in pig. METHODS AND RESULTS: Salmonella Typhimurium DT104 was orally administered in all pigs prior to antibiotic treatment, and monitored with the native E. coli. Higher numbers of S. Typhimurium DT104 were shed from treated pigs than untreated pigs. This lasted up to 6 weeks post-treatment in the high-dose group. In this group, there was a 30% increase in E. coli with a chlortetracycline minimal inhibitory concentration (MIC) > 16 mg l-1 and a 10% increase in E. coli with an MIC > 50 mg l-1 during and 2 weeks post-treatment. This effect was less-pronounced in the low-dose group. PCR identified the predominant tetracycline resistance genes in the E. coli as tetA, tetB and tetC. The concentration of chlortetracycline in the pig faeces was measured by HPLC and levels reached 80 microg g-1 faeces during treatment. CONCLUSION: Chlortetracycline treatment increases the proportion of resistant enteric bacteria beyond the current withdrawal time. SIGNIFICANCE AND IMPACT OF THE STUDY: Treated pigs are more likely to enter abattoirs with higher levels of resistant bacteria than untreated pigs promoting the risk of these moving up the food chain and infecting man.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号