Protein phosphotase Cdc14 (Cell division cycle gene 14) is a key regulator of late mitotic events in Saccharomyces cerevisiae. However the function of human Cdc14 (HsCdc14A & B) and its regulatory network are still elusive. In this study, we identified
a new partner of HsCdc14A named Brap2 (BRCA1 associated protein 2) using yeast two-hybrid screening assay. The interaction
between these two proteins is confirmed by co-immunoprecipitation in human HEK 293T cells. Brap2 co-localizes with HsCdc14A
on mitotic spindle poles and over-expression of Brap2 causes multiple spindle poles. Furthermore, we found that Brap2, which
has intrinsic RING domain dependent E3 ligase activity, facilitates HsCdc14A Lys-63 linked ubiquitin modification, indicating
that Brap2 may be the ubiquitin E3 Ligase of HsCdc14A. Our findings imply that Brap2 plays a significant role in cell cycle
regulation besides its facilitation of HsCdc14A ubiquitination. 相似文献
1. 1. The relationship between temperature and Hill reaction activity has been investigated in chloroplasts isolated from barley (Hordeum vulgare L. cv. Abyssinian).
2. 2. An Arrhenius plot of the photoreduction of 2,6-dichlorophenolindophenol (DCIP) showed no change in slope over the temperature range 2–38 °C. The apparent Arrhenius activation energy (Ea) for the reaction was 48.1 kJ/mol.
3. 3. In the presence of an uncoupler of photophosphorylation, methylamine, the Ea for DCIP photoreduction went through a series of changes as the temperature was increased. Changes were found at 9, 20, 29 and 36 °C. The Ea was highest below 9 °C at 63.7 kJ/mol. Between 9 and 20 °C the Ea decreased to 40.4 kJ/mol and again to 20.2 kJ/mol between 20 and 29 °C. Between 29 and 36 °C there was no further increase in activity with increasing temperature. The temperature-induced changes at 9, 20 and 29 °C were reversible. At temperatures above 36 °C (2 min) a thermal and largely irreversible inactivation of the Hill reaction occurred.
4. 4. Temperature-induced changes in Ea were also found when ferricyanide was substituted for DCIP or gramicidin D for methylamine. The addition of an uncoupler of photophosphorylation was not required to demonstrate temperature-induced changes in DCIP photoreduction following the exposure of the chloroplasts to a low concentration of cations.
5. 5. The photoreduction of the lipophilic acceptor, oxidized 2, 3, 5, 6-tetramethyl-p-phenylenediamine, also showed changes in Ea in the absence of an uncoupler.
6. 6. The temperature-induced changes in Hill activity at 9 and 29 °C coincided with temperature-induced changes in the fluidity of chloroplast thylakoid membranes as detected by measurements of electron spin resonance spectra. It is suggested that the temperature-induced changes in the properties and activity of chloroplast membranes are part of a control mechanism for regulation of chloroplast development and photosynthesis by temperature.
CD14 is a surface differentiation antigen that functions as a receptor for bacterial lipopolysaccharide. The cellular signaling events that lead to lipopolysaccharide-induced production of inflammatory mediators are the primary cause of myocardial dysfunction observed in sepsis. Here, we evaluated the role of CD14 in chick embryo cardiomyocytes stimulated with lipopolysaccharide. CD14 expression was detected by confocal laser microscopy observation and by immunoblotting analysis. Moreover, we provided evidence for CD14-dependent functional responses of lipopolysaccharide-stimulated cardiomyocytes in terms of tumor necrosis factor (TNF)-alpha and nitric oxide (NO) production. Attenuated TNF-alpha and NO secretion, following anti-CD14 treatment of cardiomyocytes, suggested a role for this receptor in lipopolysaccharide-mediated cell responses. We also evidenced that labeled lipopolysaccharide was internalized and localized next to the Golgi complex, at the level of lysosomes, and in the perinuclear zone. The intracytoplasmatic transport seems to depend on the contractile apparatus, because cell pretreatment with cytochalasin D prevented lipopolysaccharide internalization and reduced both TNF-alpha and NO release. Lipopolysaccharide internalization was dependent on CD14 receptor, since anti-CD14 pre-treatment prevented endotoxin uptake by cardiomyocytes. Results demonstrated: (1) CD14 is expressed on the surface membrane of cardiomyocytes; (2) CD14 is involved in cytoskeletal dependent lipopolysaccharide internalization at specific cytoplasmatic locations; (3) CD14 plays a role in lipopolysaccharide-mediated responses by cardiomyocytes after lipopolysaccharide internalization. 相似文献
Permafrost‐affected soils of the northern circumpolar region represent 50% of the terrestrial soil organic carbon (SOC) reservoir and are most strongly affected by climatic change. There is growing concern that this vast SOC pool could transition from a net C sink to a source. But so far little is known on how the organic matter (OM) in permafrost soils will respond in a warming future, which is governed by OM composition and possible stabilization mechanisms. To investigate if and how SOC in the active layer and adjacent permafrost is protected against degradation, we employed density fractionation to separate differently stabilized SOM fractions. We studied the quantity and quality of OM in different compartments using elemental analysis, 13C solid‐phase nuclear magnetic resonance (13C‐NMR) spectroscopy, and 14C analyses. The soil samples were derived from 16 cores from drained thaw lake basins, ranging from 0 to 5500 years of age, representing a unique series of developing Arctic soils over time. The normalized SOC stocks ranged between 35.5 and 86.2 kg SOC m?3, with the major amount of SOC located in the active layers. The SOC stock is dominated by large amounts of particulate organic matter (POM), whereas mineral‐associated OM especially in older soils is of minor importance on a mass basis. We show that tremendous amounts of over 25 kg OC per square meter are stored as presumably easily degradable OM rich in carbohydrates. Only about 10 kg OC per square meter is present as presumably more stable, mineral‐associated OC. Significant amounts of the easily degradable, carbohydrate‐rich OM are preserved in the yet permanently frozen soil below the permafrost table. Forced by global warming, this vast labile OM pool could soon become available for microbial degradation due to the continuous deepening of the annually thawing active layer. 相似文献
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type. 相似文献