排序方式: 共有35条查询结果,搜索用时 0 毫秒
31.
HELEN M. BAULCH PETER J. DILLON ROXANE MARANGER JASON J. VENKITESWARAN HENRY F. WILSON SHERRY L. SCHIFF 《Freshwater Biology》2012,57(3):509-525
1. Diel variation in metabolism contributes to variation in oxygen (O2) concentrations in streams. This variation in O2 and other parameters (e.g. pH) can in turn affect the rates of microbial nitrogen (N) processing, concentrations of nitrogenous solutes and production of the greenhouse gas nitrous oxide (N2O). We investigated diel variability in emissions of N2O and the magnitude of short‐term variability in N solutes across 10 streams. 2. Nitrous oxide fluxes varied on average 2.3‐fold over diel cycles. Concentrations would be underestimated by sampling around noon, but N2O fluxes would not show a consistent bias. Time‐weighted mean daily N2O flux was strongly related to nitrate concentration (r2 = 0.58). Diel patterns in N2O and dissolved N species were often complex (rather than simple sinusoidal curves), probably reflecting complex underlying processes. 3. Reliance on samples obtained around noon would overestimate daily mean nitrate concentrations by 5% and underestimate ammonium by 32% (average bias across all streams and dates). 4. Dissolved organic N did not show consistent day–night variation. However, the magnitude of diel variability was similar to that observed for dissolved inorganic N. Organic and inorganic N concentrations were often similar. Both appear to be dynamic components of stream N budgets. 5. The Intergovernmental Panel on Climate Change (IPCC) relies upon an emission factor to estimate indirect agricultural N2O emissions from streams and ground water. The measured emission factor (defined as the ratio of concentrations of N2O‐N to ‐N) was typically below the recently revised IPCC default figure. Measured values varied on average 1.8‐fold over approximately 24‐h periods and were slightly higher at night than by day. The emission factor was actually highest in streams that were net sinks for N2O, highlighting a conceptual problem in the current IPCC method. 6. Typical sampling programmes rely on daytime‐only sampling, which might cause bias in results. In our study streams, the bias was generally small. Diel variation in nitrate concentrations was related to mean temperature; variation in ammonium and N2O concentrations was greatest at low concentrations of nitrite and ammonium. 相似文献
32.
33.
Péron C Weimerskirch H Bost CA 《Proceedings. Biological sciences / The Royal Society》2012,279(1738):2515-2523
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies. 相似文献
34.
Nicolas Titeux Klaus Henle Jean‐Baptiste Mihoub Adrián Regos Ilse R. Geijzendorffer Wolfgang Cramer Peter H. Verburg Lluís Brotons 《Global Change Biology》2016,22(7):2505-2515
Efficient management of biodiversity requires a forward‐looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land‐use and land‐cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land‐use and land‐cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward‐looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. 相似文献
35.
Climate change is a grave danger for humans and a looming threat to Earth's biodiversity in the twenty-first century. Assessing the vulnerability of species to climate change is critical for practical conservation efforts. Due to their limited dispersal ability, amphibians are one of the most vulnerable groups of vertebrates to climate change. Among them, the species that inhabit mountains suffer a tremendous amount of climate change-induced pressures. We, therefore, adopted the Azerbaijan Mountain Newt (Neurergus crocatus), which currently inhabits Northwest Iran, North Iraq, and Southeast Turkey, as a case study for assessing the effects of climate change on the distribution patterns of mountain amphibians. By applying the species distribution models (SDMs) in this study, we tried to hindcast the species distribution area in the past and illustrate the impacts of climate change on its distribution in the present and future (the 2050s and 2070s) climate conditions. Also, the patch metrics have been deployed for identifying habitat fragmentation. Our results indicate a more than 50% rise in the species’ current suitable habitats compared to its glacial refugia. The suitable habitat is expected to gradually decrease in RCP 2.6 and RCP 8.5. Among the three countries in which the species occurs, its distribution overlaps with protected areas only in Iraq. The number of habitat patches will grow and reach approximately 20 to 60 patches by 2070 and the average area of the patches will decrease throughout this time. Aside from the numerous threats that endanger the species, climate change puts the long-term existence of Azerbaijan Newt in jeopardy. The results of this study stress the urgent need for taking extreme measures on the species management and conserving its remnant habitat patches. 相似文献