排序方式: 共有53条查询结果,搜索用时 15 毫秒
11.
Cardiovascular diseases have been one of the leading killers among the human population worldwide. During the heart development, cardiomyocytes undergo a transition from hyperplastic to hypertrophic growth with an unclear underlying mechanism. In this study, we aim to investigate how interferons differentially stimulate the interferon-inducible transmembrane (IFITM) family proteins and further be involved in the process of heart development. The expression levels of three IFITM family members, IFITM1, IFITM2, and IFITM3 were investigated during Sprague-Dawley rat myocardial development and differentiation of H9C2 cardiomyocytes. The effects of interferon-α, -β, and -γ on DNA synthesis in H9C2 cells were also characterized. Up-regulation of IFITM1 and IFITM3 were observed during the heart development of Sprague-Dawley rat and the differentiation of H9C2 cells. Moreover, interferon-α and -β induce the expression of IFITM3 while interferon-γ up-regulates IFITM1. Finally, interferon-α and -β were demonstrated to inhibit DNA synthesis during H9C2 cell differentiation. Our results indicated interferons are potentially involved in the differentiation and cell proliferation during heart development. 相似文献
12.
《Redox report : communications in free radical research》2013,18(5):194-206
AbstractNO? alone is a poorly reactive species; however, it is able to undergo secondary reactions to form highly oxidizing and nitrating species, NO2?, N2O3, and ONOO?. These secondary reactive nitrogen species (RNS) are capable of modifying a diversity of biomolecular structures in the cell. The chemical properties of individual RNS will be discussed, along with their ability to react with amino acids, metal cofactors, lipids, cholesterol, and DNA bases and sugars. Many of the identified RNS-induced modifications have been observed both in vitro and in vivo. Several of these chemical modifications have been attributed with a functional role in the cell, such as the modulation of enzyme activity. Other areas in the field will be discussed, including the ability of RNS to react with metabolites, RNA, and substrates in the mitochondrion, and the cellular removal/repair of RNS-modified structures. 相似文献
13.
《Redox report : communications in free radical research》2013,18(5):207-213
AbstractBilirubin is the final product of heme metabolism. Until recently, bilirubin was considered as a mere by-product of heme degradation but, in the last 20 years, many papers have appeared in the literature demonstrating that this bile pigment is endowed with a strong antioxidant activity, being able to counteract the cellular damage elicited by reactive oxygen species in many in vitro and in vivo experimental systems. Interestingly, compelling evidence has shown that BR can serve as an endogenous scavenger of both nitric oxide and reactive nitrogen species, thus widening the protective role of bilirubin to other reactive species originating within the cellular milieu. The aim of this paper is to give an overview of the interaction between bilirubin and nitric oxide/reactive nitrogen species; furthermore, the possible pathophysiological and clinical relevance of this interaction will be discussed. 相似文献
14.
Functional roles of effectors of plant-parasitic nematodes 总被引:2,自引:0,他引:2
15.
The Protective Effect of Apocynin on Cyclosporine A‐Induced Hypertension and Nephrotoxicity in Rats 下载免费PDF全文
16.
17.
Yongzhi Yang Mingjuan Sun Lianghua Wang Binghua Jiao 《Journal of cellular biochemistry》2013,114(5):967-974
Tumor hypoxia was first described in the 1950s by radiation oncologists as a frequent cause of failure to radiotherapy in solid tumors. Today, it is evident that tumor hypoxia is a common feature of many cancers and the master regulator of hypoxia, hypoxia‐inducible factor‐1 (HIF‐1), regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy. Although the tumor hypoxia response mechanism leads to a multitude of downstream effects, it is angiogenesis that is most crucial and also most susceptible to molecular manipulation. The delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF‐1 in the regulation of angiogenic growth factors. In this article, we review what has been described about HIF‐1: its structure, its regulation, and its implication for cancer therapy and we focus on its role in angiogenesis and cancer. J. Cell. Biochem. 114: 967–974, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
18.
19.
20.
《Redox report : communications in free radical research》2013,18(3):136-142
AbstractReactive nitrogen species (RNS), namely nitric oxide (NO?) and peroxynitrite (ONOO?) are produced in the inflammatory sites and may contribute to the deleterious effects of inflammation. The aim of the present study was to evaluate the putative scavenging effect of a particular group of non-steroidal anti-inflammatory drugs (NSAIDs), the pyrazolone derivatives dipyrone, aminopyrine, isopropylantipyrine, and antipyrine against RNS, using in vitro non-cellular screening systems. The results obtained showed that dipyrone and aminopyrine were highly potent scavengers of NO? and ONOO? while antipyrine exerted little effect and isopropylantipyrine no effect whatsoever against these two RNS and that, in the presence of bicarbonate, the scavenging potencies of both dipyrone and aminopyrine were slightly decreased. It could thus be inferred that the observed scavenging effects may be of therapeutic benefit for patients under anti-inflammatory treatment with dipyrone and aminopyrine in the case of overproduction of RNS. On the other hand, the possible depletion of physiological NO? concentrations, namely at the gastrointestinal tract as well as the formation of reactive derivatives of aminopyrine and/or dipyrone, resulting from their reaction with RNS, may otherwise be harmful for these patients. 相似文献